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Abstract
Likelihood ratio policy gradient methods have been some of the most successful
reinforcement learning algorithms, especially for learning on physical systems.
We describe how the likelihood ratio policy gradient can be derived from an im-
portance sampling perspective. This derivation highlights how likelihood ratio
methods under-use past experience by (i) using the past experience to estimate
only the gradient of the expected return U(θ) at the current policy parameteri-
zation θ, rather than to obtain a more complete estimate of U(θ), and (ii) using
past experience under the current policy only rather than using all past experience
to improve the estimates. We present a new policy search method, which lever-
ages both of these observations as well as generalized baselines—a new technique
which generalizes commonly used baseline techniques for policy gradient meth-
ods. Our algorithm outperforms standard likelihood ratio policy gradient algo-
rithms on several testbeds.

1 Introduction

Policy gradient methods have been some of the most effective learning algorithms for dynamic con-
trol tasks in robotics. They have been applied to a variety of complex real-world reinforcement
learning problems, such as hitting a baseball with an articulated arm robot [1], constrained hu-
manoid robotic motion planning [2], and learning gaits for legged robots [3, 4, 5]. For such robotics
tasks real-world trials are typically the most time consuming factor in the learning process. Making
efficient use of limited experience is crucial for good performance.

In this paper we describe a novel connection between likelihood ratio based policy gradient methods
and importance sampling. Specifically, we show that the likelihood ratio policy gradient estimate
is equivalent to the gradient of an importance sampled estimate of the expected return function
estimated using only data from the current policy. This insight indicates that likelihood ratio policy
gradients are quite naive in terms of data use, and suggests an opportunity for novel algorithms
which use all past data more efficiently by working with the importance sampled expected return
function directly.

Our main contributions are as follows. First, we develop algorithms for global search over the
importance sampled expected return function, allowing us to make more progress for a given amount
of experience. Our approach uses estimates of the importance sampling variance to constrain the
search in a principled way. Second, we derive generalizations of optimal policy gradient baselines
which are applicable to the importance sampled expected return function.

Section 2 describes preliminaries on Markov decision processes (MDPs), policy gradient methods
and importance sampling. Section 3 describes the novel connection between importance sampling
and likelihood ratio policy gradients, and Section 4 examines our novel minimum variance baselines.
Section 5 outlines our proposed method. Section 6 relates our method to prior work. Section 7
demonstrates the effectiveness of the proposed methods on standard reinforcement learning testbeds.
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2 Preliminaries
Markov Decision Processes. A Markov decision process (MDP) is a tuple (S,A, T,R,D, γ,H),
where S is a set of states; A is a set of actions/inputs; T = {P (·|s, u)}s,u is a set of state transition
probabilities (P (·|s, u) is the state transition distribution upon taking action u in state s); R : S ×
A 7→ R is the reward function;D is a distribution over states from which the initial state s0 is drawn;
0 < γ < 1 is the discount factor; and H is the horizon time of the MDP, so that the MDP terminates
after H steps1. A policy π is a mapping from states S to a probability distribution over the set of
actions A. We will consider policies parameterized by a vector θ ∈ Rn. We denote the expected
return of a policy πθ by

U(θ) = EP (τ ;θ)

[∑H
t=0 γ

tR(st, ut)|πθ
]

=
∑
τ P (τ ; θ)R(τ). (2.1)

Here P (τ ; θ) is the probability distribution induced by the policy πθ over all possible state-action tra-
jectories τ = (s0, u0, s1, u1, . . . , sH , uH). We overload notation and let R(τ) =

∑H
t=0 γ

tR(st, ut)
be the (discounted) sum of rewards accumulated along the state-action trajectory τ .

Likelihood Ratio Policy Gradient. Likelihood ratio policy gradient methods perform a (stochas-
tic) gradient ascent over the policy parameter space Θ to find a local optimum of U(θ). One well-
known technique called REINFORCE [6, 7] expresses the gradient∇θU(θ) as follows:

g = ∇θU(θ) = EP (τ ;θ)[∇θ logP (τ ; θ)R(τ)] ≈ ĝ = 1
m

∑m
i=1∇θ logP (τ (i); θ)R(τ (i)),

where the rightmost expression provides us an unbiased estimate of the policy gradient from
m sample paths {τ (1), . . . , τ (m)} obtained from acting under policy πθ. Using the Markov as-
sumption, we can decompose P (τ ; θ) into a product of conditional probabilities and we obtain
∇θ logP (τ (i); θ) =

∑H
t=0∇θ log πθ(u

(i)
t |s

(i)
t ). Hence no access to a dynamics model is required

to compute an unbiased estimate of the policy gradient. REINFORCE has been shown to be moder-
ately efficient in terms of number of samples used [6, 7].

To reduce the variance it is common to use baselines. Since EP [∇θ logP (τ ; θ)] =
∇θ

∑
τ P (τ ; θ) = ∇θ1 = 0 we can add b>∇θ logP (τ ; θ) (where b is a vector which can be

optimized to minimize variance) to the REINFORCE gradient estimate without biasing it [8, 9]. Past
work often used a scalar b, resulting in:

∇θU(θ) = EP (τ ;θ)[∇θ logP (τ ; θ)(R(τ)− b)] ≈ ĝ = 1
m

∑m
i=1∇θ logP (τ (i); θ)(R(τ (i))− b).

Importance Sampling. For a general function f and a probability measure P , computing a quantity
of interest of the form

EP (X)[f(X)] =
∫
x
P (x)f(x)dx.

can be computationally challenging. The expectation is often approximated with a sample-based es-
timate. However, samples from P could be difficult to obtain, or P might have very low probability
where f takes its largest values. Importance sampling provides an alternative solution which uses
samples from a different distribution Q. Given samples from Q, we can estimate the expectation
w.r.t. P as:

EP (X)[f(X)] = EQ(X)

[
P (X)
Q(X)f(X)

]
≈ 1

m

∑m
i=1

P (x(i))
Q(x(i))

f(x(i)) with x(i) ∼ Q

In the above, we assume Q(x) = 0 ⇒ P (x) = 0. Hence, one can sample from a different distri-
bution Q and then simply re-weight the samples to obtain an unbiased estimate. This can be readily
leveraged to estimate the expected return of a stochastic policy [10] as follows:

Û(θ) = 1
m

∑m
i=1

P (τ(i);θ)
Q(τ(i))

R(τ (i)), τ (i) ∼ Q (2.2)

where we assume Q(τ) = 0⇒ P (τ ; θ) = 0. If we choose Q(τ) = P (τ ; θ′), then we are estimating
the return of a policy πθ from sample paths obtained from acting according to a policy πθ′ . Evaluat-
ing the importance weights does not require a dynamics model: P (τ(i);θ)

P (τ(i);θ′)
=

∏H
t=0 πθ(ut|st)∏H
t=0 πθ′ (ut|st)

. If we

have samples from many different distributions P (τ ; θ(j)), a standard technique is to create a fused
empirical distribution Q(τ) = 1

m

∑m
j=1 P (τ ; θ(j)) to enable use of all past data [10].

1Any infinite horizon MDP with discounted rewards can be ε-approximated by a finite horizon MDP, using
a horizon Hε = dlogγ(ε(1− γ)/Rmax)e, where Rmax = maxs |R(s)|.
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3 Likelihood Ratio Policy Gradient via Importance Sampling
We now outline a novel connection between policy gradients and importance sampling. A set of
trajectories {τ (1), . . . , τ (m)} sampled from policy πθ∗ induces a distribution over paths Q(τ) =

P (τ ; θ∗). Let Û(θ∗) denote the importance sampled estimate of U(θ) at θ∗. Using Equation (2.2),
we have:

∂Û
∂θj

(θ∗) = 1
m

∑m
i=1

1
Q(τ(i))

∂P (τ(i);θ∗)
∂θj

R(τ (i))

= 1
m

∑m
i=1

P (τ(i);θ∗)
Q(τ(i))

∂ logP (τ(i);θ∗)
∂θj

R(τ (i))

= 1
m

∑m
i=1

∂ logP (τ(i);θ∗)
∂θj

R(τ (i)) (using Q(τ) = P (τ ; θ∗)). (3.1)

Equation 3.1 is the j’th entry of the likelihood ratio based estimate of the gradient of U(θ) at θ∗.
This analysis shows that the standard likelihood ratio policy gradient can be interpreted as forming
an importance sampling based estimate of the expected return based on the runs under the current
policy πθ∗ and then using this estimate of the expected return function only to estimate a gradient
at θ∗. In doing so, it fails to make efficient use of the trials from past policies: (i) It only uses the
gradient of the function Û(θ) at the point θ∗, rather than all information provided by the function
Û(θ), and (ii) It only uses the runs under the most recent policy πθ∗ , rather than using a more
informed importance sampling based estimate that uses all past data.

Instead of only using local information from a single policy to drive our learning, we can use global
information provided by Û(θ) using trials run under all past policies. Such importance sampling
based methods (as have been proposed in [10]) should be able to learn from fewer trial runs than the
currently widely popular likelihood ratio based methods.

Generalization to G(PO)MDP / Policy Gradient Theorem formulation. The observation that past
rewards do not depend on future states or actions is leveraged by the G(PO)MDP [8] and the Policy
Gradient Theorem [11] variations on REINFORCE to reduce the variance on their gradient estimates.
This same observation can also be leveraged when estimating the expected return function itself. Let
τ1:t denote the state action sequence experienced from time 1 through time t, then we have

U(θ) =
∑
τ P (τ ; θ)R(τ) =

∑
τ

∑H
t=0 P (τ1:t; θ)R(st, ut). (3.2)

For simplicity of notation we will continue to describe our approach in terms of the expression for
U(θ) given in Equation (2.1), but our generalization of baselines, and our policy search algorithm
are equally applicable when using the expression for U(θ) we present in Equation (3.2).

4 Generalized Unbiased Baselines
Previous work has shown that the REINFORCE gradient estimate benefits greatly from the addition
of an optimal baseline term [12, 9, 8]. In this section, we show that policy gradient baselines are
special cases of a more general variance reduction technique. Our result generalizes policy gradient
baselines in three ways: (i) It applies to estimating expectations of any random quantity, not just
policy gradients; (ii) It allows for baseline matrices and higher-dimensional tensors, not just vec-
tors; and (iii) It can be applied recursively to yield baseline terms for baselines since baselines are
themselves expectations.

Minimum Variance Unbiased Baselines. Given a random variable X ∼ Pθ(X), where Pθ
is a parametric probability distribution with parameter θ, we have that EPθ [∇θ logPθ(X)] = 0.
Hence for any constant vector b and any scalar function h(X), we have that 1

m

∑m
i=1(h(x(i)) −

b>∇θ logPθ(x
(i))) with x(i) drawn from Pθ is an unbiased estimator of the scalar quantity

EPθ [h(X)]. The variance of this estimator is minimized when the variance of the random variable
g(X) = h(X)− bT∇θlogPθ(X) is minimized. This variance is given by:

VarPθ [h(X)−b>∇θ logPθ(X)] = EPθ [
(
h(X)− b>∇θ logPθ(X)

)2
]−(EPθ [h(X)−b>∇θ logPθ(X)])2.

As b>EPθ [∇θ logPθ(X)] = 0, the second term is independent of b. Setting the gradient of the first
term with respect to b equal to zero yields the minimum variance baseline

b = EPθ [∇θ logPθ(X)∇θ logPθ(X)>]−1EPθ [∇θ logPθ(X)h(X)]. (4.1)

The baselines commonly employed with REINFORCE, GPOMDP, and other likelihood ratio policy
gradient methods can be derived as special cases of this generalized baseline [12].
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Minimum Variance Unbiased Baselines with Importance Sampling. When using im-
portance sampling with x(i) drawn from Q, we have an unbiased estimator of the form
1
m

∑m
i=1

Pθ(x
(i))

Q(x(i))
(h(x(i))− b>∇θ logPθ(x

(i))) with a minimum variance baseline vector

b = EQ
[
Pθ(X)
Q(X)

∇θ logPθ(X)Pθ(X)
Q(X)

∇θ logPθ(X)>
]−1

EQ
[
Pθ(X)
Q(X)

∇θ logPθ(X)Pθ(X)
Q(X)

h(X)
]
. (4.2)

Baselines. The minimum variance technique is naturally extended to vector-valued or matrix-
valued random variables h(X). For each entry in h(X) we can compute a minimum variance
baseline vector b using Equation (4.1) or (4.2). In general, if h(X) is an n-dimensional tensor, we
can stack these baseline vectors into a n+ 1-dimensional tensor. Indeed, in the case of REINFORCE
we would obtain a baseline matrix, rather than a baseline scalar (as in the original work [7]) and
rather than a vector baseline (as described in later work, such as [12]). The baselines themselves are
estimated from sample data. Using standard policy gradient methods, it can be impractical to run
enough trials to accurately fit such baselines. By using importance sampling to reuse data we can
use richer baseline terms in our estimators.

Recursive Baselines. The baselines are themselves composed of expectations. It is possible to
recursively insert minimum variance unbiased baseline terms into these expectations in order to
reduce the variance on the baseline estimates. However, the number of baseline parameters being
estimated increases rapidly in this recursive process. Moreover, if we estimate multiple expectations
from the same set of samples, these estimates become correlated and the final result is no longer
unbiased. In practice, these baselines can be regularized to match the amount of available data. In
Section 8 we empirically investigate the performance of several different baseline schemes.

5 Policy Search Using Û

We propose the algorithm outlined in Figure 1. It uses importance sampling with optimal generalized
baselines to obtain estimates Û(θ) of the expected return function based on the data gathered so far.
This estimator allows to search for a θ which improves the expected return. It maintains a list of
candidate policy parameters from which it searches for improvements. Memory-based search allows
backtracking away from unpromising parts of the search space without taking additional, costly trials
on the real platform.

Input: domain of policy parameters Θ, initial policy πθ̂0

for i = 0 to ... do
1.Run M trials under policy πθ̂i
2. Search within ESS region
for j = 1 : i do
θj ← θ̂j
while Û(θj) is improving do
gj ← step direction(Û(θj))

αj ← ESS aware line search(Û(θj), gj)
θj ← θj + αjgj

end while
end for
3. Update policy: θ̂i+1 = arg maxθj Û(θj)

end for

Figure 1: Our policy search algorithm.

Estimate of Expected Returns: We use weighted importance sampling, and add a baseline to
Equation (2.2):

Û(θ) = 1
Z

∑m
i=1

P (τ(i);θ)
Q(τ(i))

(R(τ (i))− b>∇θ logP (τ (i); θ)), Z =
∑m
i=1

P (τ(i);θ)
Q(τ(i))

, (5.1)

where i indexes over all past trials, andQ is the empirical distribution over past trials (see Section 2).
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Optimal Baseline: Applying Equation (4.2) we get the following sample based estimate of the
optimal baseline b for the estimate of the expected return function:2

b =

(
1
m

∑m
i=1

(
P (τ(i);θ)

Q(τ(i))

)2
∇θ logPθ(τ (i))∇θ logP (τ (i); θ)>

)−1

(
1
m

∑m
i=1

(
P (τ(i);θ)

Q(τ(i))

)2
∇θ logP (τ (i); θ)R(τ (i)))

)
. (5.2)

ESS Search Region: As our policy search steps away from areas of Θ where we have gathered
sample data, the variance of our estimator Û increases and our function estimate becomes unreli-
able. The effective sample size ESS = m

1+Var(wi)
is commonly used to measure the quality of an

importance sampled estimate [13]. Here wi are the normalized importance weights and M is the
number of trials. Our policy search only considers parameter values θ with sufficiently high ESS.

Step Direction: We use the finite-difference gradient of Û as the step direction for the inner loop of
the policy search. In theory, since every outer iteration searches for a local optimum within the ESS
region, the choice of step direction affects only the amount of computation and not the number of
trials required for convergence.3

Line Search: One issue with gradient based optimization methods is the need to choose the right
step size. One solution is to use adaptive line search-based step size rules like the Armijo rule [15].4
For traditional likelihood ratio policy search methods this would require additional trials. By con-
trast, no new trials are required when using importance sampling.5

6 Prior Work
Various past approaches use the idea of constructing a model of the system from sample data, which
can be used to search for the optimal policy, e.g., [16], [10], [17]. In contrast to Sutton’s DYNA,
our method attempts to directly optimize the expected return function by varying policy parameters
rather than building a model for the environment. Cao [17] also uses importance sampling to reuse
past data for estimating policy gradients, but focuses on estimating local gradient information rather
than global surface information. The work of Peshkin and Shelton [10] is most similar in spirit to
our policy search method. They use importance sampling to construct a “proxy” environment from
sampled data which can be used to evaluate the expected return at arbitrary policies. They apply
a hill-climbing policy search to this “proxy” surface. This technique does not use estimates of the
importance sampling variance to restrict the search, does not use generalized minimum variance
baselines, and does not use memory. Our experiments show that these improvements are necessary
to outperform standard policy gradient methods across our test domains.

Our general approach of estimating and optimizing the expected return function instead of the gradi-
ent of the expected return function allows for non-local policy steps. Recent EM-based policy search
methods [18, 14] are able to make larger steps by optimizing a local lower bound on the expected
return function. These methods can use importance sampling to make better use of data. This lower
bound objective function and update step could be used in our memory based approach instead of
following the finite difference gradient step.

We explained throughout the paper the relationship with earlier methods such as REINFORCE [7, 6]
and GPOMDP [8, 9]. PEGASUS [19] is an efficient alternative policy search method but can only
be used if a simulation model is available.

Recent work has suggested following the natural gradient direction [20, 21, 22]. The natural gradi-
ent approach is a parameterization invariant second order method which finds the direction which

2Estimating the baseline from the same data as the other terms in Equation (5.1) results in a biased estimator.
This is often done in policy gradient methods and we do so in our experiments. It is however possible to retain
an unbiased estimate by data splitting, which could include averaging over resamplings.

3In practice, since we cannot always find the true optimum of Û within the ESS region, differences in
step direction do affect policies that are sampled. Other step directions or policy improvement rules may be
substituted for the finite difference gradient step. For example, we could follow the natural gradient direction,
or use an EM-based policy update [14].

4Though the Armijo rule has its own free parameters to choose, performance is much less sensitive to these
hyper-parameters. We use the same Armijo rule parameters for all of our experiments.

5We can extend standard likelihood ratio policy gradient methods to use the importance sampled expected
return estimate. In our experience this approach yields results comparable to the best fixed hand-tuned step size
for each problem—hence alleviating the need of these methods for tuning the step size.
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(a) (b) (c)

Figure 2: (a) Performance of various choices for the higher level baselines in our approach. We have a matrix
baseline (MAT), and a recursive baseline (REC). For reference, we also plot our approach without an optimal
baseline (GLO), GPOMDP (GP), and IS GPOMDP (ISGP). (b), (c) Performance evaluation on LQR and Cart-
pole. The algorithms considered are the GPOMDP likelihood ratio policy gradient method (GP), GPOMDP
with importance sampling (ISGP), Peshkin and Shelton’s algorithm (PS), and our approach (OUR).

maximize the ratio of the improvement of the objective function over the change in distribution over
trajectories. Our approach exploits a similar intuition through consideration of variance through
the effective sampling size (ESS)—preferring regions for which the past experience gives a good
estimate.

Natural actor critic (NAC) approaches have enjoyed substantial success on real-life robotics tasks
[1, 23]. In the episodic setting, which we consider in this paper, the only difference between episodic
NAC and natural gradient is in the estimate of the baseline. Episodic NAC computes a scalar base-
line by solving an LSTD-Q type regression rather than, e.g., using a minimum variance baseline
criterion.6

7 Experimental Setup
We present experiments on four testbeds: LQR, cartpole, mountaincar, and acrobot. The details
of each experimental testbed can be found in the appendix. Though the systems are simulated, the
learning algorithms cannot make use of the simulation dynamics except by gathering trials. For each
testbed we randomly generated a pool of initial policies until one is found that does not achieve the
worst case return We then used our policy gradient algorithms to optimize performance. The same
set of initial policies is used across learning algorithms. We focus on an analysis of performance
when only allowed for a small number of trials: In each of the following experiments we run 50
iterations of policy search, running M trials for each policy at each iteration.

8 Experimental Results
In our experimental results, we first evaluate several generalized baselines in the context of our
policy search algorithm. We then break down the effectiveness of each component of our algorithm:
memory based search, optimal baselines, and ESS search region. Our policy search outperform
likelihood ratio methods on two of the testbeds and performs equally well on the two remaining
ones. Performance is reported as the expected return versus the number of sampled trials. The
expected return is plotted on the y-axis. Error bars are shown based on running each instance with
10 initial policies. The number of trials is plotted on the x-axis.

Generalized Baseline Experiments: There are a variety of choices in our generalized baseline
technique: We can vary the dimensionality of the baseline terms to add, the depth of the recursive
baseline, and what (if any) regularization to use.

We implemented our policy search using three different baseline techniques. We used a vector
baseline, a matrix baseline, and a recursive tensor baseline on the matrix baseline. Figure 2 (a)
shows the average reward received plotted against the number of trials run for the matrix (MAT) and
recursive tensor (REC) baselines. The vector baseline was not able to improve the initial policies.
The matrix baseline outperforms the other baselines and we use it going forward.

Components of Our Approach: Figure 3 examines each of the central contributions of our al-
gorithm (memory based search, baselines, and ESS). We tested our approach without any of the

6The difference in performance due to different estimation procedure for the scalar baseline has been ob-
served to be so small that only one plot is shown rather than both in [1].
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(a) (b) (c)

Figure 3: This figure demonstrates the effect of (a) memory based search (b) optimal baselines, and (c) ESS
search region on cartpole performance. In each figure, we show the performance of Peshkin and Shelton’s
approach (PS) and our approach (OUR). In addition, we show the performance with memory only (PS+M),
baselines only (PS+B), and ESS only (PS+E), and our approach with memory (OUR-M), baselines (OUR-B),
and ESS (OUR-E) removed. GPOMDP (GP) and IS GPOMDP (ISGP) are also plotted for reference purposes.

three components, which is equivalent to Peshkin and Shelton’s algorithm [10], which we label PS.
We added each one of the three components individually, labeled PS+M, PS+B, PS+E. We also
tested the performance with two out of three components, labeled OUR-M, OUR-B, and OUR-E
respectively. Finally we tested the performance of our approach with all three components. The
results indicate that each of the three components is improving performance with ESS and memory
based being the most important components. Without any one of the components our approach has
difficulty outperforming importance sampled GPOMDP.

Comparison With Likelihood Ratio Policy Gradients: We have compared several episodic likeli-
hood ratio algorithms against our global policy search algorithm. We runM = 10 trials per iteration,
and repeat each trial 10 times. For the likelihood ratio algorithms, we use the appropriate optimal
baselines [12] and hand-tune the step size. As a comparison, we have also implemented policy gra-
dient algorithms which use importance sampling to estimate the gradient of Û . Figure 2 plots the
reward received as a function of the number of real trials sampled from the system. We plot our
global search approach against GPOMDP, an importance sampled GPOMDP (IS GPOMDP), and
an implementation of Peshkin and Shelton’s global search.7 Our approach is consistently able to
improve its initial policy, outperforming likelihood ratio policy gradient methods on both the cart-
pole and LQR testbeds. In general, importance sampling based methods outperform non-importance
sampling based algorithms, which work poorly when given few trials. All algorithms in considera-
tion performed poorly on the mountaincar and acrobot testbed—none of them showing significant
improvement in performance through learning.

9 Conclusion
We have shown that policy gradient methods are a special case of gradient descent over the im-
portance sampled expected return function Û . Since our approach provides a full approximation
of the expected return function, we can use global information in addition to gradient information
to achieve faster learning. We have also shown that optimal baselines for standard policy gradient
methods can be seen as special cases of a more general variance reduction technique. Our impor-
tance sampling approach allows us to leverage more data to fit generalized baseline terms in our
estimators. Our experiments show our algorithm requires fewer trials than current policy gradient
methods on several testbeds and no more trials on the remaining testbeds, making it appealing for
robotic learning tasks for which trials are expensive.

7We do not plot REINFORCE as our experiments indicate that GPOMDP outperforms REINFORCE on these
testbeds, a fact consistent with existing literature [1].
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Appendix
(i) LQR: We use the formulation given in [21]. We use a linear parameterized policy with param-
eters K ∈ R2, given by u(t) ∼ N(Lx(t), σ), L = −1.999 + 1.998

1+eK1
and σ = 0.001 + 1

1+eK2
.8

The initial state is drawn from x(0) ∼ N(0.3, 0.1), and the dynamics are given by x(t + 1) =
0.7 ∗ x(t) + u(t) +N(0, 0.01). The system incurs a penalty of −(x(t)2 + u(t)2) at each time step.
Each episode was 20 time steps.

(ii) Cartpole: This task consists of a cart moving along a track while balancing a pole. The goal
of this task is to move the cartpole back to the origin as quickly as possible while keeping the
pole upright. Following the formulation given in [24], our control input is drawn from the policy
u ∼ N(K>x, σ), with state x = [x, ẋ, θ, θ̇] and policy parameters K = [K1, K2, K3, K4, σ].

The dynamics are given by ẍ =
F−mpl(θ̈ cos θ−θ̇2 sin θ)

mc+mp
, and θ̈ =

g sin θ(mc+mp)−(ut+mplθ̇2 sin θ) cos θ
4
3 l(mc+mp)−mpl cos2 θ

.
Here mp = 0.1,mc = 1.0, l = 0.5, g = 9.81. The control interval was 0.02s. We solve the
dynamics using a fourth order Runge-Kutta method. We run each episode for 200 time steps, though
the episode terminates once the cartpole has failed (defined as whenever |x| > 2.4m or |θ| >
0.7rad). The reward function is −2 for every time step after the failure occurs, 0 if the cartpole is
balanced and satisfies |x| < 0.05, and −1 otherwise.

(iii) Mountain Car: The mountain car testbed [25] models a simulated car, which starts in a valley
and must climb the hill to the right as quickly as possible. The task involves two states [x, ẋ] and
three policy parameters [K1, K2, σ]. Our control inputs for this problem are restricted to {−1, 1}.
Our parameterized policy is given by π(ut = 1|xt, ẋt) = P (K1sign(ẋt)ẋ

2
t + K2 + εt < xt),

where εt ∼ N(0, σ). Our initial acceleration is f0 = +1; ft+1 = utft. The dynamics are given by
ẋt+1 = ẋt + 0.001ft − 0.0025 cos(3(xt − 0.5)), and xt+1 = xt + ẋt

We run for 200 time steps, though the episode terminates once the mountaincar reaches its target at
x = 1.0. The reward function is 0 if the car is at its target and −1 otherwise.

(iv) Acrobot: The acrobot [25] is a robot with 2 rotational links connected by an actuated motor. It
has four states [θ1, θ̇1, θ2, θ̇2] and parameters K = [K1, . . . , K8, σ]. The acrobot is initialized to
be close to [π, 0, 0, 0] (pointing straight up), and the goal is to keep the acrobot balanced upright
for as long as possible. Our control input is drawn from the policy u ∼ N(Lx + K>φ(x), σ).
Here L is the optimal LQR controller for acrobot linearized around the stationary point, and φ(x) =

[(π − θ1)θ2, θ̇1θ̇2, (π − θ1)θ̇1, θ2θ̇2, (π − θ1)|π − θ1|, θ̇1|θ̇1|, θ2|θ2|, θ̇2|θ̇2|]. The dynamics are
given by θ̈1 = −d2θ̈2+φ1

d1
, θ̈2 = u+d2/d1φ1−φ2

m2l2c2+I2−d22/d1
, d1 = m1l

2
c1+m2(l21+l2c2+2l1lc2 cos θ2)+I1+I2,

d2 = m2∗(l2c2+l1∗lc2 cos θ2)+I2, φ1 = −m2l1lc2θ̇2
2
−sin(θ2)−2m2l1lc2θ̇2θ̇1 sin(θ2)+(m1lc1+

m2l1)g cos(θ1 − π/2) + φ2, and φ2 = m2 + lc2g cos(θ1 + θ2 − π/2). Here m1 = 1,m2 = 1, l1 =
1, l2 = 2, lc1 = 0.5, lc2 = 1, I1 = 0.0833, I2 = 0.33, g = 9.81. The control interval was 0.02s.
We solve the dynamics using a fourth order Runge-Kutta method. Each episode is run for 400 time
steps, though the episode terminates once the acrobot has failed (defined as whenever the height of
the second link t = − cos(θ1)− cos(θ1 + θ3) < 0.5). The reward function is−2 for every time step
after the failure occurs, and −(1− (−cos(θ1)− cos(θ1 + θ2))/2)2 otherwise.

8We followed standard formulations of the control policy for LQR and cartpole. All policies are designed
as functions of a linear combination of the policy parameters and hand-selected features.
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