
Motion Planning under Uncertainty using
Differential Dynamic Programming in Belief Space

Jur van den Berg, Sachin Patil, and Ron Alterovitz

Abstract We present an approach to motion planning under motion and sensing un-
certainty, formally described as a continuous partially-observable Markov decision
process (POMDP). Our approach is designed for non-linear dynamics and obser-
vation models, and follows the general POMDP solution framework in which we
represent beliefs by Gaussian distributions, approximate the belief dynamics using
an extended Kalman filter (EKF), and represent the value function by a quadratic
function that is valid in the vicinity of a nominal trajectory through belief space.
Using a variant of differential dynamic programming, our approach iterates with
second-order convergence towards a linear control policy over the belief space that
is locally-optimal with respect to a user-defined cost function. Unlike previous work,
our approach does not assume maximum-likelihood observations, does not assume
fixed estimator or control gains, takes into account obstacles in the environment, and
does not require discretization of the belief space. The running time of the algorithm
is polynomial in the dimension of the state space. We demonstrate the potential of
our approach in several continuous partially-observable planning domains with ob-
stacles for robots with non-linear dynamics and observation models.

1 Introduction

Motion planning under uncertainty, or belief-space planning, has received consider-
able interest in the robotics community over the past decade. The objective is to plan
a path (or rather a control policy) for a robot in partially-observable state spaces with
spatially varying degrees of motion and sensing uncertainty, such that the expected
cost (as defined by a user-specified cost-function) is minimized. Optimal solutions
lead the robot through regions of the state space where the most information on the
state is gained through sensing and the least information is lost due to motion un-

The authors are with the Department of Computer Science, University of North Carolina at Chapel
Hill, USA. E-mail: {berg, sachin, ron}@cs.unc.edu.

1

2 Jur van den Berg, Sachin Patil, and Ron Alterovitz

certainty in order to maximize, for instance, the probability of reaching a specified
goal location while avoiding collisions with obstacles. This problem is formally de-
scribed as a partially-observable Markov decision process (POMDP), on which a
large body of work is available in the literature.

Solutions to POMDPs are known to be extremely complex [17], since they at-
tempt to compute a control policy over the belief space, which in the most general
formulation is an infinite-dimensional space of all possible probability distributions
over the (finite-dimensional) state space. Solutions based on discrete or discretized
state and action spaces are inherently subject to the “curse of dimensionality”, and
have only been successfully applied to very small and low-dimensional state spaces.

In this paper, we present a method to approximate a locally optimal solution to
the POMDP problem with continuous state and action spaces and non-linear dy-
namics and observation models, where we assume a belief can be represented by a
Gaussian distribution. Our approach uses a variant of differential dynamic program-
ming to perform value iteration, where the value function is approximated using
a quadratization around a nominal trajectory, and the belief dynamics is approxi-
mated using an extended Kalman filter. The result is a linear control policy over the
belief space that is valid in the vicinity of the nominal trajectory. By executing the
control policy, a new nominal trajectory is created around which a new control pol-
icy is constructed. This process continues with second-order convergence towards
a locally-optimal solution to the POMDP problem. Unlike general POMDP solvers
that have an exponential running time, our approach does not rely on discretizations
and has a running time that is polynomial in the dimension of the state space.

Our approach builds off of and generalizes a series of previous works that have
addressed the same problem of creating applicable approximations to the POMDP
problem. Our work combines and extends ideas from previous work in order to
overcome their key limitations. In particular, our approach (i) does not assume
maximum-likelihood observations, (ii) does not assume fixed estimator or control
gains, (iii) does not require discretizations of the state and action spaces, (iv) runs
in polynomial time, (v) takes into account obstacles, and (vi) converges towards a
locally-optimal control policy given an initial nominal trajectory. We do assume that
the dynamics and observation models and cost functions are sufficiently smooth,
and that the belief about the state of the robot is well described by only its mean and
its variance. We show the potential of our approach in several illustrative partially-
observable domains containing obstacles for robots with non-linear dynamics and
observation models.

2 Previous Work

Partially observable Markov decision processes (POMDPs) [22] provide a princi-
pled mathematical framework for planning under uncertainty in partially-observable
environments. They are known to be of extreme complexity [17], and can only be
directly applied to problems with small and low-dimensional state spaces [14]. Re-

Motion Planning under Uncertainty using DDP in Belief Space 3

cently, several POMDP algorithms have been developed that use approximate value
iteration with point-based updates [1, 15, 18, 16]. These have been shown to scale
up to medium-sized domains. However, they rely on discretizing the state space or
the action space, making them inevitably subject to the “curse of dimensionality”.
The methods of [21, 3, 8, 5] handle continuous state and action spaces, but maintain
a global (discrete) representation of the value function over the belief space. In con-
trast, our approach is continuous and approximates the value function in parametric
form only in the regions of the belief space that are relevant to solving the problem,
allowing for a running time polynomial in the dimension of the state.

Another class of works, to which our method is directly related, assume a linear-
quadratic Gaussian (LQG) framework to find approximately locally optimal feed-
back policies. In the basic LQG derivation [2], motion and sensing uncertainty have
no impact on the resulting policy. As shown in [23], the LQG framework can be
extended such that it accounts for state and control dependent motion noise, but still
implicitly assumes full observation (or an independent estimator) of the state. Sev-
eral approaches have been proposed to include partial and noisy observations such
that the controller will actively choose actions to gain information about the state.
Belief roadmaps [20] and icLQG [9] combine an iterative LQG approach with a
roadmap, but this approach does not compute a (locally) optimal solution. The ap-
proaches of [19, 6, 7] incorporate the variance into an augmented state and use the
LQG framework to find a locally-optimal control policy. However, these approaches
assume maximum-likelihood observations to make the belief propagation determin-
istic. LQG-MP [24] removes this assumption, but only evaluates the probability of
success of a given trajectory, rather than constructing an optimal one. Belief trees
[4] overcome this limitation by combining a variant of LQG-MP with RRT* to find
an optimal trajectory through belief space. Vitus and Tomlin [25] propose an alter-
native solution that involves solving a chance constrained optimal control problem.
However, these approaches does not solve a POMDP as they assume fixed control
gains along each section of the trajectory independent of the context. The work of
[13] takes into account state and control dependent motion and observation noise by
an interleaved iteration of the estimator and the controller. This approach does not
allow for obstacles and converges towards a locally-optimal controller that assumes
fixed estimator gains. Our approach combines and generalizes these approaches as
it does not assume maximum-likelihood observations, does not assume fixed control
or estimator gains, and takes into account the existence of obstacles in the environ-
ment to compute locally-optimal policies that maximize the probability of reaching
a goal location while avoiding collisions.

3 Preliminaries and Definitions

We begin by defining POMDPs in their most general formulation (following [22]).
Then, we specifically state the instance of the problem we discuss in this paper.

4 Jur van den Berg, Sachin Patil, and Ron Alterovitz

3.1 General POMDPs

Let X ⊂ Rn be the space of all possible states x of the robot, U ⊂ Rm be the space
of all possible control inputs u of the robot, and Z ∈ Rk be the space of all possible
sensor measurements z the robot may receive. General POMDPs take as input a
stochastic dynamics and observation model, here given in probabilistic notation:

xt+1 ∼ p[xt+1|xt ,ut], zt ∼ p[zt |xt], (1)

where xt ∈ X , ut ∈ U , and zt ∈ Z are the robot’s state, control input, and received
measurement at stage t, respectively.

The belief b[xt] of the robot is defined as the distribution of the state xt given all
past control inputs and sensor measurements:

b[xt] = p[xt |u0, . . . ,ut−1,z1, . . . ,zt]. (2)

Given a control input ut and a measurement zt+1, the belief is propagated using
Bayesian filtering:

b[xt+1] = η p[zt+1|xt+1]

∫
p[xt+1|xt ,ut]b[xt]dxt , (3)

where η is a normalizer independent of xt+1. Denoting belief b[xt] by bt , and the
space of all possible beliefs by B ⊂ {X → [0,1]}, the belief dynamics defined by
Eq. (3) can be written as a function β : B×U ×Z →B:

bt+1 = β [bt ,ut ,zt+1]. (4)

Now, the challenge of the POMDP problem is to find a control policy πt : B→U
for all 0 ≤ t < `, where ` is the time horizon, such that selecting the controls ut =
πt [bt] minimizes the objective function:

E
z1,...,z`

[
c`[b`]+

`−1∑
t=0

ct [bt ,ut]
]
, (5)

for given immediate cost functions c` and ct . The expectation is taken given the
stochastic nature of the measurements.

A general solution approach uses value iteration [22], a backward recursion pro-
cedure, to find the control policy πt for each stage t:

v`[b`] = c`[b`] (6)

vt [bt] = min
ut

(ct [bt ,ut]+ E
zt+1

[
vt+1[β [bt ,ut ,zt+1]]

]
) (7)

πt [bt] = argmin
ut

(ct [bt ,ut]+ E
zt+1

[
vt+1[β [bt ,ut ,zt+1]]

]
), (8)

where vt [bt] : B → R is called the value function at time t.

Motion Planning under Uncertainty using DDP in Belief Space 5

3.2 Problem Definition

The complexity of POMDPs stems from the fact that B, the space of all beliefs,
is infinite-dimensional, and that in general the value function cannot be expressed
in parametric form. We address these challenges in our approach by representing
beliefs by Gaussian distributions, approximating the belief dynamics using an ex-
tended Kalman filter, and approximating the value function by a quadratization
around a nominal trajectory through the belief space.

Specifically, we assume we are given a (non-linear) stochastic dynamics and ob-
servation model, here given in state-transition notation:

xt+1 = f[xt ,ut ,mt], mt ∼N [0, I], (9)
zt = h[xt ,nt], nt ∼N [0, I], (10)

where mt is the motion noise and nt is the measurement noise, each drawn from an
independent Gaussian distribution with (without loss of generality) zero mean and
unit variance. Note that the motion and sensing uncertainty can be state and control
input dependent through manipulations on mt and nt within the functions f and h,
respectively.

The belief, denoted bt = (x̂t ,Σt), is assumed to be defined by the mean x̂t and
variance Σt of a Gaussian distributionN [x̂t ,Σt] of the state xt . Similar to the general
case, our objective is to find a control policy ut = πt [bt] that minimizes the cost
function E

[
c`[b`] +

∑`−1
t=0 ct [bt ,ut]

]
. In our case, we assume in addition that the

Hessian matrix ∂ 2c`
∂b∂b [b] is positive-semidefinite for all b, and that the Hessian matrix

∂ 2ct
∂u∂u [b,u] is positive-definite for all b, u, and t. Further, we assume that the initial
belief b0 = (x̂0,Σ0) is given.

4 Approach

To approximate a locally optimal solution to the Gaussian POMDP problem as for-
mulated above, we follow the general solution approach as sketched in Section 3.1.
First, we approximate the belief dynamics using an extended Kalman filter. Second,
we approximate the value function using a quadratic function that is locally valid in
the vicinity of a nominal trajectory though the belief space. We then use a variant
of differential dynamic programming to perform the value iteration, which results
in a linear control policy over the belief space that is locally optimal around the
nominal trajectory. We then iteratively generate new nominal trajectories by execut-
ing the control policy, and repeat the process until convergence to a locally-optimal
solution to the POMDP problem. We discuss each of these steps in this section, and
analyze the running time of our algorithm.

6 Jur van den Berg, Sachin Patil, and Ron Alterovitz

4.1 Belief Dynamics and the Extended Kalman Filter

Given a current belief bt = (x̂t ,Σt), a control input ut , and a measurement zt+1, we
let the belief evolve using the extended Kalman filter (EKF). The EKF is widely
used for state estimation of non-linear systems [26], and uses the first-order approx-
imation that for any vector-valued function f[x] of a stochastic variable x we have:

E[f[x]]≈ f[E[x]], Var[f[x]]≈ ∂ f
∂x

[E[x]] ·Var[x] · ∂ f
∂x

[E[x]]T . (11)

The EKF update equations are then given by:

x̂t+1 = f[x̂t ,ut ,0]+Kt(zt+1−h[f[x̂t ,ut ,0],0]), (12)
Σt+1 = (I−KtHt)Γt , (13)

where

Γt = AtΣtAT
t +MtMT

t , At =
∂ f
∂x

[x̂t ,ut ,0], Mt =
∂ f

∂m
[x̂t ,ut ,0],

Kt = ΓtHT
t (HtΓtHT

t +NtNT
t)
−1, Ht =

∂h
∂x

[f[x̂t ,ut ,0],0], Nt =
∂h
∂n

[f[x̂t ,ut ,0],0].

Note that all of these matrices are functions of bt and ut . Equations (12) and (13)
define the (non-linear) belief dynamics. The second term of Eq. (12), called the
innovation term, depends on the measurement zt+1. Since the measurement is un-
known in advance, the belief dynamics are stochastic. Using the assumptions of Eq.
(11), the innovation term is distributed according to N [0,KtHtΓt].

Defining bt =
[x̂t

vec[Σt]

]
as a true vector, containing the mean x̂t and the columns

of the variance Σt (obviously, in our implementation we exploit the symmetry of Σt
to eliminate the redundancy), the belief dynamics are given by:

bt+1 = g[bt ,ut]+wt , wt ∼N [0,W [bt ,ut]], (14)

where

g[bt ,ut] =

[
f[x̂t ,ut ,0]

vec[(I−KtHt)Γt]

]
, W [bt ,ut] =

[
KtHtΓt 0

0 0

]
. (15)

4.2 Value Iteration

We perform value iteration backward in time to find a locally optimal control policy
using a variant of differential dynamic programming [10]. We approximate the value
function vt [b] as a quadratic function of the form

Motion Planning under Uncertainty using DDP in Belief Space 7

vt [b] =
1
2

bT Stb+bT st + st , (16)

with St ≥ 0, that is approximately valid around a nominal trajectory in belief space
(b̄0, ū0, . . . , b̄`, ū`), which we assume is given (we will discuss initialization and
iterative convergence of the nominal trajectory to a locally optimal trajectory in the
next subsection).

For the final time t = `, the value function v` is approximated by setting S` =
∂ 2c`
∂b∂b [b̄`], s` = ∂c`

∂b [b̄`]−S`b̄`, and s` = c`[b̄n]− b̄T
` s`− 1

2 b̄T
` S`b̄`, which amounts to

a second-order Taylor expansion of c` around the point b̄`. The value functions and
the control policies for the stages ` > t ≥ 0 are computed by backward recursion –
following Eq. (7), we get:

vt(b) = min
u

(
ct [b,u]+E

[
vt+1[g[b,u]+wt]

])
= min

u

(
ct [b,u]+

1
2

g[b,u]T St+1g[b,u]+g[b,u]T st+1 + st+1 +

1
2

tr
[
St+1W [b,u]

])
(17)

= min
u
(qt [b,u]), (18)

where qt [b,u] groups together the terms in Eq. (17). The trace-term in Eq. (17)
follows from the fact that E[xT Qx] = E[x]T QE[x] + tr[QVar[x]] for any stochastic
variable x. It is this term that ensures that the stochastic nature of the belief dynamics
is accounted for in the value iteration. To approximate the optimal value of u as a
function of b we take the second-order Taylor expansion of qt [b,u] in (b̄t , ūt):

vt [b]≈min
ũ

(1
2

[
b̃
ũ

]T [Ct ET
t

Et Dt

][
b̃
ũ

]
+

[
b̃
ũ

]T [ct
dt

]
+ et

)
, (19)

where ũ = u− ūt and b̃ = b− b̄t , and

Ct =
∂ 2qt

∂b∂b
[b̄t , ūt], Dt =

∂ 2qt

∂u∂u
[b̄t , ūt], Et =

∂ 2qt

∂u∂b
[b̄t , ūt],

cT
t =

∂qt

∂b
[b̄t , ūt], dT

t =
∂qt

∂u
[b̄t , ūt], et = qt [b̄t , ūt]. (20)

Equation (19) is then solved by expanding the terms, taking the derivative with
respect to ũ and equating to 0 (for ũ to be actually a minimum, Dt must be positive-
definite – we will discuss this issue in Section 4.4). We then get the solution:

ũ =−D−1
t Et b̃−D−1

t dt . (21)

Hence, the control policy for time t is linear and given by:

ut = πt(bt) = Ltbt + lt , Lt =−D−1
t Et , lt =−D−1

t (dt −Et b̄t)+ ūt . (22)

8 Jur van den Berg, Sachin Patil, and Ron Alterovitz

Filling Eq. (21) back into Eq. (19) gives the value function vt [b] as a function of
only b in the form of Eq. (16). Expanding and collecting terms gives:

St =Ct −ET
t D−1

t Et , (23)

st = ct −ET
t D−1

t dt −St b̄t , (24)

st = et −
1
2

dT
t D−1

t dt − b̄T
t st −

1
2

b̄T
t St b̄t . (25)

This recursion then continues by computing a control policy for stage t−1.

4.3 Iteration to a Locally-Optimal Control Policy

The above value iteration gives a control policy that is valid in the vicinity of the
given nominal trajectory. To let the control policy converge to a local optimum, we
iteratively update the nominal trajectory using the most recent control policy, as in
differential dynamic programming [10]. Given the initial belief b0 =(x̂0,Σ0), and an
(arbitrary) initial series of control inputs ū(0)

0 , . . . , ū(0)
`−1, which can be obtained using

RRT motion planning [11], for instance, let the initial control policy be given by
L(0)

t = 0 and l(0)t = ū(0)
t for all t. We then compute the nominal trajectory (b̄(i)

t , ū(i))
of the i’th iteration (starting with i = 0) by forward integrating the control policy in
the deterministic (zero-noise) belief dynamics:

b̄(i)
0 = b0, ū(i)

t = L(i)
t b̄(i)

t + l(i)t , b̄(i)
t+1 = g[b̄(i)

t , ū(i)
t], (26)

Then, using the value iteration procedure as described above given the nominal tra-
jectory of the i’th iteration, we find the control policy, i.e. the matrices L(i+1)

t and
vectors l(i+1)

t for the i+ 1’th iteration. We then recompute a nominal trajectory us-
ing Eq. (26), and reiterate. This lets the control policy converge to a locally optimal
trajectory with a second-order convergence rate [12].

4.4 Ensuring Convergence

To ensure that the above algorithm in fact converges to a locally-optimal control
policy, the algorithm must be augmented with some subtle but important changes,
common to approaches based on differential dynamic programming [10, 12, 27].

First, to make sure that in each step of the value iteration we actually minimize
the value function (rather than maximizing it), matrix Dt must be positive definite,
which is not the case in general. In addition, to ensure that the trajectory iteration
converges to a local optimum, the matrices St as well as the entire matrix

[Ct ET
t

Et Dt

]
of Eq. (19) must be positive-semidefinite [12]. To enforce these requirements, while
retaining the most amount of second-order information about the value function, we
proceed as follows. Let Rt =

∂ 2ct
∂u∂u [b̄t , ūt], which is by definition positive-definite

(see Section 3.2). Note that ct [b,u] is one of the terms of qt [b,u], of which Dt

Motion Planning under Uncertainty using DDP in Belief Space 9

is the Hessian with respect to u. Then we decompose the matrix Qt =
[Ct ET

t
Et Dt−Rt

]
into Qt = VΛV T such that Λ is a diagonal matrix containing Qt ’s eigenvalues.
Second, we construct Λ̃ by setting all negative elements of Λ to 0, and construct
Q̃t =VΛ̃V T . Matrix Q̃t is now a positive-semidefinite version of Qt . Subsequently,
we let

[C̃t ẼT
t

Ẽt D̃t

]
= Q̃t +

[0 0
0 Rt

]
, such that D̃t is positive definite, and

[C̃t ẼT
t

Ẽt D̃t

]
is positive-

semidefinite. Now, the matrices Ct , Dt , and Et are replaced by C̃t , D̃t , and Ẽt , respec-
tively, in Eqs. (21)-(25). If these changes are made, it is automatically guaranteed
that the matrices St are positive-semidefinite. Note that S` is positive-semidefinite
too, since ∂ 2c`

∂b∂b [b̄`] is positive-definite by definition (see Section 3.2).
These changes do not affect the second-order convergence characteristic of the

algorithm. However, as with Newton’s method, this second order convergence is
only achieved if the current nominal trajectory is already close to the locally-optimal
trajectory. If the current nominal trajectory is “far away” from the local optimum,
using second-order approaches may overshoot local-minima, which significantly
slows down convergence, or even results in divergence. To address this issue, we
make an additional change to the algorithm, following [27]. We limit the increment
to the control policy by adding a parameter ε to Eq. (21): ũ =−D̃−1

t Ẽt b̃− εD̃−1
t dt .

Initially, ε = 1, but each time a new control policy is computed that creates a trajec-
tory with higher cost than the previous nominal trajectory (the cost of a trajectory
is evaluated using value iteration as above without updating the control policy), the
new trajectory is rejected, and ε is reduced by a factor β < 1, and the iteration
continues. When a new trajectory is accepted, ε is reset to 1. This change is equiva-
lent to using backtracking line search to limit the step size in Newton’s method and
guarantees convergence to a locally-optimal control policy [27].

4.5 Running Time Analysis

Let us analyze the running time of our algorithm. The dimension of the state is n,
and we assume for the sake of analysis that the dimension of the control inputs and
the measurements are O(n). As the belief contains the covariance matrix of the state,
the dimension of a belief is O(n2). Hence, the matrix Ct of Eq. (20) contains O(n4)
entries. Each of these entries is computed using numerical differentiation, and re-
quires multiplying matrices of size n×n within the belief propagation, taking O(n3)
time. Hence, the total running time of a single step of the value iteration is O(n7). A
complete cycle of value iteration takes ` steps (` being the time horizon), bringing
the complexity to O(`n7). The number of such cycles needed to obtain convergence
cannot be expressed in terms of n or `, but as noted before, our algorithm converges
with a second-order rate to a local optimum.

5 Environments with Obstacles

We presented our approach above for general immediate cost functions c`[b] and
ct [b,u]. In typical LQG-style cost functions, the existence of obstacles in the en-

10 Jur van den Berg, Sachin Patil, and Ron Alterovitz

vironment is not incorporated, while we may want to minimize the probability of
colliding with them. We incorporate obstacles into the cost functions as follows.

Let O ⊂ X be the region of the state space that is occupied by obstacles. Given
a belief bt = (x̂t ,Σt), the probability of colliding with an obstacle is given by the
integral over O of the probability-density function of N [x̂t ,Σt]. As described in
[24], this probability can be approximated by using a collision-checker to compute
the number σ [bt] of standard-deviations one may deviate from the mean before an
obstacle is hit. A lower-bound on the probability of not colliding is then given by
γ[n/2,σ [bt]

2/2], where γ is the regularized gamma function, and n the dimension of
the state. A lower-bound on the total probability of not colliding along a trajectory is
subsequently computed as

∏`−1
t=0 γ[n/2,σ [bt]

2/2], and this number should be maxi-
mized. To fit this objective within the minimizing and additive nature of the POMDP
objective function, we note that maximizing a product is equivalent to minimizing
the sum of the negative logarithms of the factors. Hence, we add to ct [b,u] the term
f [σ [b]] = − logγ[n/2,σ [b]2/2] to account for the probability of colliding with ob-
stacles (note that f [σ [b]] ≥ 0), potentially multiplied by a scaling factor to allow
trading-off with respect to other costs (such as the magnitude of the control input).

While the above approach works well, it should be noted that in order to compute
the Hessian of qt [b,u] at b̄t (as is done in Eq. (20)), a total of O(n4) collision-checks
with respect to the obstacles need to be performed, since the obstacle term f [σ [b]] is
part of qt [b,u]. As this can be prohibitively costly, we can instead approximate the
Hessian of f [σ [b]] using linearizations, which involves only O(n2) collision checks.
To this end, let us approximate f [σ] by a second-order Taylor expansion:

f [σ [b]]≈ 1
2

a(σ [b]−σ [b̄t])
2 +b(σ [b]−σ [b̄t])+ f [σ [b̄t]], (27)

where a= ∂ 2 f
∂σ∂σ

[σ [b̄t]] and b= ∂ f
∂σ

[σ [b̄t]] (note that this requires only one collision-
check). Now, we approximate (σ [b]−σ [b̄t]) using a first-order Taylor expansion:

σ [b]≈ (b− b̄t)
T a+σ [b̄t] ⇔ σ [b]−σ [b̄t]≈ b̃T a, (28)

where aT = ∂σ

∂b [b̄t] (note that this requires O(n2) collision-checks). By substituting
Eq. (28) in Eq. (27), we get

f [σ [b]]≈ 1
2

b̃T (aaaT)b̃+ b̃T (ba)+ f [σ [b̄t]]. (29)

Hence, aaaT is an approximate Hessian of the obstacle term f [σ [b]] of qt [b,u] that
requires only O(n2) collision-checks to compute.

6 Results

We evaluate our approach in two scenarios with obstacles: a point robot with linear
dynamics that is navigating in a 2-D light-dark environment (adapted from Bry and
Roy [4]) and a non-holonomic car-like robot with second-order dynamics moving
in a partially-observable environment with spatially varying sensing capabilities.

Motion Planning under Uncertainty using DDP in Belief Space 11

Our method takes as input a collision-free trajectory to the goal. A naı̈ve tra-
jectory computed using an uncertainty-unaware planner might stray very close to
the obstacles in the environment and accumulates considerable uncertainty during
execution. We show that our method improves the input trajectory to compute a
locally-optimal trajectory and a corresponding control policy that safely guides the
robot to the goal, even in the presence of large motion and measurement noise.

6.1 Light-Dark Environment

We consider the case of a point robot moving in a 2-D environment with obstacles
shown in Fig. 1. The robot localizes itself using measurements from sensors in the
environment, the reliability of which varies continuously as a function of the hori-
zontal coordinate of the robot’s position. The experiment is set up such that the robot
needs to move away from the goal in order to better localize itself before moving
through the narrow passage and reaching the goal.

We assume the following linear dynamics model with control-dependent noise:

xt+1 = f[xt ,ut ,mt] = xt +ut +M[ut] ·mt , (30)

where the state xt = (x,y) ∈ R2 is the robot’s position, the control input ut ∈ R2 is
the robot’s velocity, and the matrix M[ut] scales the motion noise mt proportional to
the control input ut . We assume the following linear observation model with state-
dependent noise:

zt = h[xt ,nt] = xt +N[xt] ·nt , (31)

where the measurement vector zt ∈R2 consists of noisy measurements of the robot’s
position and the matrix N[xt] scales the measurement noise based on a sigmoid func-
tion of the horizontal coordinate of the robot’s position x (as shown in Fig. 1). The
robot is able to obtain reliable measurements in the bright region of the environment,
but the measurements become noisier as the robot moves in to the dark regions.

We use the following definitions of c`[b`] and ct [bt ,ut] in the cost function to be
minimized (Eq. (5)):

c`[b`] = x̂T
` Q`x̂`+ tr[Q`Σ`], ct [bt ,ut] = uT

t Rtut + tr[QtΣt]+ f [σ [bt]], (32)

where the term x̂T
` Q`x̂`+ tr[Q`Σ`] = E[xT

` Q`x`] encodes the final cost of arriving at
the goal, uT

t Rtut penalizes the control effort along the trajectory, tr[QtΣt] penalizes
the uncertainty, and f [σ [bt]] encodes the obstacle cost term. We use recurring state
and control cost matrices of Qt = I and Rt = I and the final cost matrix, Q` = 10`I
in our experiments.

Results and discussion: In our experiment, we provide a collision-free initial
trajectory computed using an RRT planner [11] (Fig. 1(a)) as input to our method.
The control policy convergence took 2.75 seconds on a 3.33 Ghz Intel R© i7TM PC.
Fig. 1(b) shows the nominal trajectory and associated beliefs of the solution com-
puted by our method. The robot’s trajectory visits the region of the environment with
reliable sensing for better localization before moving through the narrow passage.

12 Jur van den Berg, Sachin Patil, and Ron Alterovitz

(a) (b) (c)

(d) (e) (f)

Fig. 1 Point robot moving in a 2-D environment with obstacles. (a) An initial collision-free tra-
jectory is computed using an RRT planner. (b) Nominal trajectory and the associated beliefs of
solution computed using our method. The robot moves away from the goal to better localize itself
before reaching the goal with significantly reduced uncertainty. Execution traces of the robot’s true
state starting from the initial belief (c) and a different initial belief (d), while following the com-
puted control policy. (e) Nominal trajectory computed by ignoring the innovation term in the belief
dynamics. The optimization is unable to progress sufficiently to the region of the environment with
reliable sensing, resulting in considerable uncertainty in the robot state near the obstacles and at
the goal. (f) Execution traces of the robot’s true state starting from the initial belief and ignoring
the innovation term are much noisier as compared to the execution traces shown in (c).

We simulated the robot’s execution of the computed control policy using the
given dynamics and measurement models with synthetic noise. Fig. 1(c) shows the
traces of the true state of the robot x across 25 simulations where the initial state of
the robot x0 is sampled from the initial belief b0. We also initialized the robot state
from a different initial belief to evaluate the robustness of the control policy. The
25 execution traces from these runs are shown in Fig. 1(d). Even if the initial belief
is far away from the nominal trajectory, the control policy is able to safely guide
the robot to the goal. We also evaluated our method quantitatively by computing
the percentage of executions in which the robot was able to avoid obstacles across
1000 simulation executions for 10 random initial beliefs. In our experiments, in 93%
(standard deviation: 3%) of the executions, the robot was able to safely traverse the
narrow passage without colliding with obstacles.

Fig. 1(e) shows the nominal trajectory computed by ignoring the innovation term
in Eq. (12), i.e. making the assumption that all future observations will obtain their
maximum-likelihood measurement estimates. Under this assumption, the optimiza-
tion is unable to progress sufficiently to the region of the environment with reliable
sensing, which results in considerable uncertainty in the robot state near the obsta-
cles and the goal. As expected, the execution traces from 25 simulations (Fig. 1(f))
are considerably noisier as compared to the execution traces obtained using our
method. The expected cost of the solution found using our method is 19.9 units
while the expected cost of a solution that ignores the innovation term is 143.0 units

Motion Planning under Uncertainty using DDP in Belief Space 13

for the parameters suggested above. This indicates that it is important to take into
account the true belief of the robot while computing the control policy and ignoring
the innovation term can lead to sub-optimal policies.

Our solution also agrees with the solution found by Bry and Roy [4] for this
experiment. Our method directly optimizes the path rather than relying on RRT*,
resulting in an order of magnitude faster computation times.

6.2 Non-holonomic car-like robot

We consider the case of a non-holonomic car-like robot navigating in a 2-D environ-
ment with obstacles shown in Fig. 2. We initialize our method with a collision-free
trajectory to the goal which is computed using an RRT planner [11].

The state x = (x,y,θ ,v) ∈R4 of the robot consists of its position (x,y), its orien-
tation θ and speed v. The control input vector u = (a,φ) consists of an acceleration
a and the steering wheel angle φ . The motion uncertainty is scaled by a constant
matrix M. This gives the following non-linear dynamics model:

xt+1 = f[xt ,ut ,mt] =

xt + τvtcosθt
yt + τvtsinθt

θt + vt tan(φ)/d
vt + τa

+Mmt , (33)

where τ is the time step and d is the length of the car-like robot.
The robot localizes itself using signal measurements from two beacons b1 and b2

placed in the environment at locations (x̌1, y̌1) and (x̌2, y̌2) respectively. The strength
of the signal decays quadratically with the distance to the beacon. The robot also
measures its current speed using an on-board speedometer. The measurement un-
certainty is scaled by a constant matrix N. This gives us the following non-linear
observation model:

zt = h[xt ,nt] =

1/((xt − x̌1)
2 +(yt − y̌1)

2 +1)
1/((xt − x̌2)

2 +(yt − y̌2)
2 +1)

vt

+Nnt , (34)

where the observation vector zt ∈ R3 consists of two readings of signal strengths
from the beacons and a speed measurement from the speedometer. Fig. 2(a) visually
illustrates the quadratic decay in the beacon signal strengths in the environment.
The robot is able to obtain very reliable measurements in the bright regions of the
environment, but the measurements become noisier as the robot moves in to the dark
regions due to the decreased signal-to-noise ratio.

We consider a similar cost function as Eq. (32) for this experiment and use re-
curring state and control input cost matrices of Qt = I and Rt = I and the final cost
matrix, Q` = 10`I, where ` is the number of sections along the initial RRT trajectory.

Results and discussion: The control policy computation took 15.3 seconds on a
3.33 Ghz Intel R© i7TM PC. Fig. 2(b) shows the nominal trajectory and associated be-
liefs of the solution computed by our method. The robot moves closer to the beacon

14 Jur van den Berg, Sachin Patil, and Ron Alterovitz

(a) (b) (c)

(d) (e)

Fig. 2 A car-like robot with second order dynamics moving in a 2-D environment with obstacles.
The robot obtains measurements from two beacons (marked by blue squares) and an on-board
speedometer. (a) An initial collision-free trajectory is computed using an RRT planner. (b) Nominal
trajectory computed using our method. Notice how the car-like robot localizes itself by moving
closer to the beacon before reaching the goal. (c) Execution traces of the robot’s true state starting
from the initial belief for the control policy computed in (b). The jaggedness of the paths is due
to the large amount of artificial motion and measurement noise introduced in the simulation. The
control policy is safely able to guide the robot to the goal, in spite of the large amount of noise. (d)
Nominal trajectory computed by varying the cost matrices (Qt = 10I). The robot tries to reduce the
uncertainty in its state by visiting both the beacons. (e) Execution traces of the robot’s true state
starting from the initial belief for the control policies computed in (d).

for better localization before reaching the goal. In contrast to the initial trajectory
(Fig. 2(a)), the locally-optimal trajectory also moves away from the obstacles and
takes a safer path to the goal.

Fig. 2(c) shows the traces of the true state of the robot x across 25 simulations
where the initial state of the robot x0 is sampled from the a-priori belief b0. We eval-
uated our method quantitatively by computing the percentage of executions in which
the robot was able to avoid obstacles across 1000 simulation executions where the
initial state of the robot x0 is sampled from the a-priori belief b0. In our experiments,
96% of the executions were collision-free. The results indicate that the computed
control policy is safely able to guide the robot to the goal region in spite of the large
amount of motion and measurement noise encountered during execution.

The cost matrices Qt and Rt determine the relative weighting between minimiz-
ing uncertainty in the robot state and minimizing control effort in the objective func-
tion. Fig. 2(d) shows the nominal trajectory of the solution computed by changing
the cost matrix Qt = 10I. Notice that the trajectory visits both the beacons for better
localization and minimizing uncertainty, at the expense of additional control effort.
We simulated 1000 execution runs using the new control policy, of which 98% were
collision-free.

Fig. 3 shows the nominal trajectory when a different initial trajectory is provided
as input to our method. The presence of obstacles in the environment forces our

Motion Planning under Uncertainty using DDP in Belief Space 15

Fig. 3 A different initial
trajectory results in a different
locally-optimal solution. Our
method is able to improve
trajectories within a single
homotopy class.

method to locally optimize trajectories within a single homotopy class. In contrast
to considering a large number of initial candidate trajectories for evaluation as in
LQG-MP [24], our method would only require trajectory initializations within each
homotopy class to compute a globally optimal solution.

7 Conclusion and Future Work

We presented a general approach to motion planning under uncertainty by comput-
ing locally-optimal solutions to continuous POMDP problems in environments with
obstacles. Our approach generalizes earlier work on Gaussian-based POMDPs by
removing several key limiting assumptions, and overcomes the main drawback of
approaches based on discretizations of the state space by having a running time that
is polynomial (O(n7)) rather than exponential in the dimension of the state.

Our approach has several limitations. First, we represent beliefs using Gaussian
distributions. This may not be an acceptable approximation in some applications,
for instance ones where multi-modal beliefs are expected to appear. However, the
class of problems where Gaussian distributions are applicable is large, as is proven
by the widespread use of the extended Kalman filter for state estimation, for instance
in mobile robotics. Our approach should be applicable in any such application. Sec-
ond, we require the dynamics, observation, and cost functions to be smooth, since
our method relies on gradients to iterate towards a locally-optimal solution. Our
approach would therefore not work directly in some experimental domains shown
in previous work where there are abrupt boundaries between sensing regimes (e.g.
inside or outside the field of view of a camera).

Subjects of ongoing and future work include improving the running time of the
algorithm. While O(n7) is polynomial, it may still be too high for robots with com-
plex dynamics and high-dimensional state spaces. The running time can potentially
be brought down to O(n5) if we can avoid computing Hessian matrices. A derivation
of our approach based on a quasi-Newton variant of differential dynamic program-
ming [27] may achieve this, and may allow for the direct application of our approach
to real-world domains involving complex dynamics such as autonomous quadrotor
flight, medical needle steering, or even manipulation of deformable tissue.

Acknowledgments

This research was supported in part by the National Science Foundation (NSF) un-
der grant #IIS-0905344 and by the National Institutes of Health (NIH) under grant
#R21EB011628.

16 Jur van den Berg, Sachin Patil, and Ron Alterovitz

References

1. H. Bai, D. Hsu, W. Lee, V. Ngo. Monte Carlo value iteration for continuous state POMDPs.
Workshop on the Algorithmic Foundations of Robotics, 2010.

2. D. Bertsekas. Dynamic programming and optimal control. Athena Scientific, 2001.
3. A. Brooks, A. Makarendo, S. Williams, H. Durrant-Whyte. Parametric POMDPs for planning

in continuous state spaces. Robotics and Autonomous Systems 54(11):887–897, 2006.
4. A. Bry, N. Roy. Rapidly-exploring random belief trees for motion planning under uncertainty.

IEEE Int. Conf. on Robotics and Automation, 2011.
5. S. Candido, S. Hutchinson. Minimum Uncertainty Robot Navigation Using Information-

guided POMDP Planning. IEEE Int. Conf. on Robotics and Automation, 2011.
6. N. Du Toit, J. Burdick. Robotic motion planning in dynamic, cluttered, uncertain environ-

ments. IEEE Int. Conf. on Robotics and Automation, 2010.
7. T. Erez, W. D. Smart. A Scalable Method for Solving High-Dimensional Continuous

POMDPs Using Local Approximation. Conf. on Uncertainty in Artificial Intelligence, 2010.
8. K. Hauser. Randomized belief-space replanning in partially-observable continuous spaces.

Workshop on the Algorithmic Foundations of Robotics, 2010.
9. V. Huynh, N. Roy. icLQG: combining local and global optimization for control in information

space. IEEE Int. Conf. on Robotics and Automation, 2009.
10. D. Jacobson, D. Mayne. Differential Dynamic Programming. American Elsevier Publishing

Company, Inc., New York, 1970.
11. S. LaValle, J. Kuffner. Randomized kinodynamic planning. Int. Journal on Robotics Research

20(5):378–400, 2001.
12. L.-Z. Liao, C. Shoemaker. Convergence in unconstrained discrete-time differential dynamic

programming. IEEE Trans. on Automatic Control 36(6):692–706, 1991.
13. W. Li, E. Todorov. Iterative linearization methods for approximately optimal control and es-

timation of non-linear stochastic system. Int. Journal of Control 80(9):1439–1453, 2007.
14. L. Kaelbling, M. Littman, A. Cassandra. Planning and acting in partially observable stochastic

domains. Artificial Intelligence 101(1-2):99–134, 1998.
15. H. Kurniawati, D. Hsu, W. Lee. SARSOP: Efficient point-based POMDP planning by approx-

imating optimally reachable belief spaces. Robotics: Science and Systems, 2008. configura-
tion spaces. IEEE Trans. on Robotics and Automation 12:4(566–580), 1996.

16. S. Ong, S. Png, D. Hsu, W. Lee. Planning under uncertainty for robotic tasks with mixed
observability. Int. J. of Robotics Research 29(8):1053–1068, 2010.

17. C. Papadimitriou, J. Tsisiklis. The complexity of Markov decision processes. Mathematics of
Operations Research, 12(3):441–450, 1987.

18. J. Porta, N. Vlassis, M. Spaan, P. Poupart. Point-based value iteration for continuous
POMDPs. Journal of Machine Learning Research 7:2329–2367, 2006.

19. R. Platt, R. Tedrake, L. Kaelbling, T. Lozano-Perez. Belief space planning assuming maxi-
mum likelihood observations. Robotics: Science and Systems, 2010.

20. S. Prentice, N. Roy. The belief roadmap: Efficient planning in belief space by factoring the
covariance. Int. J. of Robotics Research 28(1112):1448-1465, 2009.

21. S. Thrun. Monte Carlo POMDPs. Advances in Neural Information Processing Systems. The
MIT Press, 2000.

22. S. Thrun, W. Burgard, D. Fox. Probabilistic Robotics, MIT Press, 2005.
23. E. Todorov, W. Li. A generalized iterative LQG method for locally-optimal feedback control

of constrained nonlinear stochastic systems. American Control Conference, 2005.
24. J. van den Berg, P. Abbeel, K. Goldberg. LQG-MP: Optimized path planning for robots with

motion uncertainty and imperfect state information. Robotics: Science and Systems, 2010.
25. M. P. Vitus, C. J. Tomlin. Closed-Loop Belief Space Planning for Linear, Gaussian Systems.

IEEE Int. Conf. on Robotics and Automation, 2011.
26. G. Welch, G. Bishop. An introduction to the Kalman filter. Tech. Report TR 95-041, University

of North Carolina at Chapel Hill, 2006.
27. S. Yakowitz. Algorithms and computational techniques in differential dynamic programming.

Control and Dynamic Systems 31:75–91, 1989.

