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Abstract— Computing grasps for an object is challenging
when the object geometry is not known precisely. In this paper,
we explore the use of Gaussian process implicit surfaces (GPISs)
to represent shape uncertainty from RGBD point cloud obser-
vations of objects. We study the use of GPIS representations to
select grasps on previously unknown objects, measuring grasp
quality by the probability of force closure. Our main contri-
bution is GP-GPIS-OPT, an algorithm for computing grasps
for parallel-jaw grippers on 2D GPIS object representations.
Specifically, our method optimizes an approximation to the
probability of force closure subject to antipodal constraints on
the parallel jaws using Sequential Convex Programming (SCP).
We also introduce GPIS-Blur, a method for visualizing 2D GPIS
models based on blending shape samples from a GPIS. We test
the algorithm on a set of 8 planar objects with transparency,
translucency, and specularity. Our experiments suggest that
GP-GPIS-OPT computes grasps with higher probability of force
closure than a planner that does not consider shape uncertainty
on our test objects and may converge to a grasp plan up to 5.7×
faster than using Monte-Carlo integration, a common method
for grasp planning under shape uncertainty. Furthermore,
initial experiments on the Willow Garage PR2 robot suggest
that grasps selected with GP-GPIS-OPT are up to 90% more
successful than those planned assuming a deterministic shape.
Our dataset, code, and videos of our experiments are available
at http://rll.berkeley.edu/icra2015grasping/.

I. INTRODUCTION

In the past five years, there has been substantial innovation
in sensing modalities such as active RGB-D sensors that
provide 3D point clouds such as the Kinect. However, these
sensors currently do not perform well with transparent and
specular objects that distort light projected by the sensor
for depth computation. For example, a depth sensor cannot
measure the tip of the nail in Fig. 1 due to its size and
specularity, leading to uncertainty about its shape. These
noisy and missing measurements cam complicate robotic
grasping when the shape of objects in the environment is not
known a priori. This motivates an object representation for
shape uncertainty and a method for computing stable grasps
with respect to this representation.

One promising object representation in robotics is the
signed distance function (SDF), which is zero-valued at
the object surface, positive-valued outside the object, and
negative-valued in the object interior [10], [11], [29], [38]. In
this paper, we consider representing objects with a Bayesian
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Fig. 1: Eight example objects on a horizontal worksurface illustrating
transparency, specularity, and sensor noise: (from top to bottom) (A) plastic
tape dispenser, (B) nail, (C) signal splitter, (D) metal toy plane, (E)
mechanical switch, (F) crystal knob, (G) squirt bottle, and (H) marker.
Displayed from left to right are an HD color image on black background,
a point cloud observation from a Primesense Carmine mounted on the
head of a PR2, the nominal shape on a 25 × 25 grid, and our GPIS-Blur
visualization. The visualization is blurry in areas of larger uncertainty and
sharper in areas of low uncertainty. Black areas in the point cloud indicate
missing observations due to transparency or specularity, and in transparent
areas the sensor sees through the objects and measures the depth of the
table.

representation of SDFs known as the Gaussian process
implicit surface (GPIS) [2], [10], [11], [19], [32], [41].
We also explore how GPIS representations can be used to
plan grasps in the presence of shape uncertainty. The key
idea behind GPIS-based representations is to represent shape
uncertainty as a distribution over all possible SDFs that could
fit sensor measurements of a shape. GPIS-based models can
have higher variances in regions where sensor measurements
are missing or unreliable and lower variances where sensor
measurements are known to be accurate [41].

Our main contribution in this paper is GP-GPIS-OPT, an
algorithm to plan grasp contacts for parallel-jaw grippers
with high probability of force closure. Our algorithm can
handle both (a) shape uncertainty represented as a GPIS and
(b) uncertainty in the grasp approach direction. A secondary



contribution is GPIS-Blur, a method to visualize 2D GPIS
models using shape sampling. We evaluate GP-GPIS-OPT
in simulation and on the Willow Garage PR2 on 8 test
objects that are challenging to perceive with visual sensors.
We compare performance with a grasp planner that assumes
a deterministic shape and with ranking grasps using Monte-
Carlo integration [7], [22], [23].

II. RELATED WORK

Polygonal mesh models are widely used for representing
shapes in robotics, but extensions of mesh models to include
uncertainty is difficult. Solutions include assuming indepen-
dent uncertainty in the vertex locations, but this ignores
spatial noise correlations [23]. GPISs are an alternative that
represent objects as distribution over SDFs [32], [41]. In
robotics, GPIS has been used in online control and active
sensing. Dragiev et al. [10] considered the use of GPIS for
grasping, using the maximum likelihood SDF to control a
grasp to reach a desired location. The authors extended this
work for tactile shape exploration during grasping but did
not utilize a measure of grasp quality to guide grasping [11].
Hollinger et al. [19] created high resolution GPIS models of
ship hulls to guide exploration by an underwater robot to
locations with the highest shape uncertainty. Other works
have used GPIS to fuse uncertain data from multiple sensors
and to guide haptic exploration of object shapes [2], [21].
In this work we consider using GPIS to plan grasp contact
points offline.

Choosing grasps given a surface representation of an
object typically focuses on finding grasps given an exact
object shape by maximizing a grasp quality metric [6], [9].
A common quality measure is the Ferrari-Canny metric,
which measures the ability to resist force perturbations [12]
and is widely used in grasp software packages such as
GraspIt! [27]. Past work on grasping with uncertainty has
focused on state uncertainty [14], [15], uncertainty in object
pose [8], [24], [40] or uncertainty in the location of contact
with the object [33].

Several works have studied the effects of shape uncer-
tainty on grasp quality. Christopoulos et al. [7] sampled
spline fits for 2-dimensional planar objects and ranked a
set of randomly generated grasps using Monte-Carlo in-
tegration, which can be computationally expensive. Kehoe
et al. [22], [23] showed that adaptive sampling could be
used to select grasps robust to part tolerance for parallel-
jaw grippers on extruded polygon shape models. Brook,
Ciocarlie, and Hsiao [4], [20] studied a Bayesian framework
to evaluate the probability of grasp success given uncertainty
in object identity, gripper positioning, shape, and pose by
simulating grasps on deterministic mesh and point cloud
models. Laaksonen et al. [1], [25] used Gaussian Processes
(GPs) to model distributions on grasp stability online from
tactile measurements, and selected grasps using Monte Carlo
Markov Chain sampling. Panahi et al. [30] presented an
algorithm to determine a sequence of pushes to orient 2D
polygonal parts with shape uncertainty by computing upper

and lower bounds on the orientation of objects after push
actions.

Past work on grasp optimization primarily focuses on
optimizing contact points on a surface with respect to a grasp
quality measure when the surface is known exactly [26], [33].
Chen et al. [5] optimized antipodal grasps to satisfy force
closure for parametric surfaces without uncertainty. Ciocarlie
et al. [9], [27] use simulated annealing to find grasps with
a high Ferrari-Canny metric for the GraspIt! software, using
a penalty on signed distance to the object surface to force
contact with the object. Simulated annealing is based on
random exploration of the input state space, which can avoid
local minima but can be less computationally efficient than
gradient-based methods [9]. Our approach can be seen as
a local optimization similar to the method of Ciocarlie et
al. [9] with constraints similar to those used by Chen et
al. [5], however our method uses an explicit model of shape
uncertainty.

III. GAUSSIAN PROCESS IMPLICIT SURFACES

In this section we review Gaussian process implicit sur-
faces (GPISs). A signed distance function (SDF) [29] de-
scribes the shape of an object by storing the signed distance
from every point in space to the nearest point on the surface.
SDFs are defined as a real-valued function f : Rd → R
such that f(x) > 0 outside the object, f(x) = 0 on the
object surface, and f(x) < 0 inside the object. A GPIS is a
Gaussian distribution over SDFs formed by Gaussian process
regression (GPR) on noisy observations of an SDF [41]. In
this work we will use d = 2 and restrict evaluations of the
SDF f to an M×M 2-dimensional grid with square cells [2],
[10]. In practice M might be set based on the resolution of
the sensor used to acquire measurements [29].

A. Gaussian Process Regression (GPR)
Gaussian process regression (GPR) is used in machine

learning as a nonparametric regression method for estimating
continuous functions from sparse and noisy data [32]. For
a GPIS, a training set consists of a set of input spatial
locations X = {x1, . . . ,xn}, xi ∈ Rd, and signed distance
observations y = {y1, . . . , yn}, yi ∈ R. In practice, y can
be acquired using KinectFusion, which uses ray tracing to
compute an SDF from RGBD point clouds [29], or by
segmenting an object from the environment and performing
a Euclidean distance transformation [13], [39].

A GPIS is specified by a mean function m(·) and a
covariance function k(·, ·), also referred to as a kernel, which
measures the similarity in signed distance between spatial
locations. Given a set of training data D = {X ,y}, mean
m(·), kernel k(·, ·), and measurement noise σm, the posterior
distribution on SDF f∗ at a test location x∗ is [32]:

p(f∗ | x∗,D) ∼ N
(
µ(x∗), σ

2(x∗)
)

µ(x∗) = m(x∗)+

k(X ,x∗)ᵀ(K + σ2
mI)−1(y −m(X )) (1)

σ2(x∗) = k(x∗,x∗)−
k(X ,x∗)ᵀ(K + σ2

mI)−1k(X ,x∗) (2)



where K ∈ Rn×n is a matrix with entries Kij = k(xi,xj).
k(X ,x∗) = [k(x1,x∗), . . . , k(xn,x∗)]

ᵀ, and m(X ) =
[m(x1), ...,m(xn)]ᵀ. This derivation can also be used to
predict the mean and variance of the SDF gradient by
differentiating the kernel function, which can be used to
obtain GPIS surface normals [10], [32], [35].

Following Dragiev et al. [10], we use the squared expo-
nential kernel:

k(xi,xj) = C exp

(
−‖xi − xj‖22

2`2

)
which specifies the correlation of the signed distance between
two spatial points. This kernel depends on a scale C ∈ R and
bandwidth ` ∈ R, which we set using maximum-likelihood
estimation [41]. Other common kernels relevant to GPIS are
the thin-plate splines kernel [41] and the Matern kernel [2].

B. GPIS Construction from Point Clouds

In this work we consider constructing 2D GPIS models
from RGBD point clouds from a single viewpoint of a Prime-
sense Carmine sensor [18]. As seen in Fig. 1, the scenario we
consider consists of objects lying flat on a table imaged from
above. Our method assumes that the object can be identified
in the point clouds and segmented from the background.
Furthermore, we assume that missing measurements in the
point cloud are caused by surface properties of the object
instead of the environment, because in our scenario the table
is measured accurately by the Primesense. Thus, we use a
constant negative mean function for the GPIS to bias areas
of missing measurements to be part of the object.

To construct a GPIS from point clouds, we first combine
several point clouds by averaging to remove the effects
of small zero-mean noise in the depth values, similar to
KinectFusion [29]. Then we create a segmentation mask
for the object in both the RGB and depth point clouds.
For the objects in Fig. 1 this segmentation is performed
by hand, and in our physical experiments we use RGB and
depth thresholding. We also create a measurement noise map,
which specifies the variance of 0-mean measurement noise,
based on a noise model of the Primesense [18]. We then
combine the two segmentation masks in an image with each
pixel weighted by its inverse variance to form an occupancy
grid, and compute an SDF using a Euclidean distance trans-
formation of the occupancy map [18], [39]. Finally, we run
GPR on the SDF values and measurement noise map to
construct a GPIS. Points with missing measurements (e.g.
NaN values in the depth map) are considered part of the
object in the occupancy map but are not used for the GPIS
construction.

This construction procedure results in high uncertainty in
(a) areas where the RGB and depth segmentations disagree
(e.g. Object A) and (b) areas with missing measurements
(e.g. Object B). GPIS could also be constructed directly from
the SDF and confidence weights used in KinectFusion [29].

IV. GPIS-BLUR VISUALIZATION

Past applications of GPIS in robotics have used visu-
alizations of the mean shape [2], [10], [11], [19], but

Fig. 2: GPIS-Blur visualization method for a 2D GPIS of Object H
from Fig. 1 with shape uncertainty near the object center. (Left to right)
We sample 1000 SDFs, threshold for zero crossings, average sample the
samples together, and finally enhance contrast for easier perception of the
uncertain regions.

visualizing shape uncertainty is difficult. This is because
GPIS specifies uncertainty in signed distance, which leads
to a complicated distribution over the spatial locations of
the zero-crossing [32]. Our “GPIS-Blur” method produces
visualizations of GPIS uncertainty by sampling SDF zero-
crossings, as illustrated in Fig. 2. Let fi ∼ N (µ,Σ) be
a sample drawn from the GPIS on the grid X . The zero-
crossing zi is computed by thresholding fi:

mi(xj) =
∑

xk∈N(xj)

I(fi(xk) ≤ 0)

zi(xj) =

{
1 mi(xj) > 0
0 mi(xj) = 0

.

where N(xj) is a neighborhood of points around xj and I
is the indicator function. This forms a binary “image” of the
model. We repeat this procedure for N samples, average the
zi “images” into a single greyscale image, and use histogram
equalization to enhance the contrast of the result [37]. The
result is that regions of the shape that are more certain appear
dark and crisp, while regions of high uncertainty appear grey
and blurred. This method can be extended to 3D by using
a transparency level based on uncertainty to give uncertain
areas a “cloudy” look.

V. GRASPING ON A GPIS REPRESENTATION

We consider a rigid object grasped from above on a 2D
worksurface using a parallel-jaw gripper. We will use a 2-
dimensional GPIS representation of the object contours to
select grasps. We assume a known, deterministic coefficient
of friction γ between the grasped object and the grippers,
as well as hard contacts for the parallel jaws of the grip-
pers. We also assume that the gripper-part interaction is
quasistatic [22], [23] and a known, constant mass density.

A. Object Model

We create a 2D GPIS representation that is augmented
to predict the gradient of the SDF [35], as described in
Section III. We use f to denote a SDF sample of the GPIS
over the spatial grid, f(·) ∼ N (µ(·), σ2(·)). We refer to the
outward pointing surface normals of f at a spatial location
x as n(x) = 5µ(x)

‖5µ(x)‖2 , which is the normalized gradient
of f [10]. The SDF f is evaluated over a fixed grid, X , as



Fig. 3: Illustration of the variables defined for GP-GPIS-OPT on a Object
H of Fig. 1 with shape uncertainty near the object center. The GPIS with
center of mass z is specified on a spatial grid with frame of reference at
the top left cornet. Jaw placements are illustrated by a direction arrow and
jaw. The target grasp (g1,g2) results in a perturbed grasp (ĝ1, ĝ2) and
approach direction v due to errors in jaw placement. When the jaws close,
the perturbed grasp contacts the surface at locations (c1, c2) due to the
width of the jaws, with outward-pointing surface normals (n1,n2).

described in Section III. The average center of mass z ∈ R2

is derived from the mean GPIS and object mass distribution.

B. Candidate Grasp Model

Our candidate grasp model is illustrated in Fig. 3. We
consider a parallel-jaw gripper with jaws of width wj ∈ R
wide and a maximum opening of wg ∈ R. We define target
grasp points as spatial locations g1,g2 ∈ R2 for each of the
parallel jaws with a coordinate frame at the top left of the
GPIS grid. Therefore our set of candidate grasps is G =
{g = (g1,g2) : ‖g1 − g2‖ ≤ wg}, and we henceforth refer
to a single planned grasp as g.

In practice a robot may not be able to execute a desired
grasp g exactly due to errors in trajectory following or
registration to the object [20]. To handle this uncertainty,
we define a perturbed grasp ĝ = (ĝ1, ĝ2) as the location
of the grasp points during execution. We model the error in
positioning the gripper as zero-mean Gaussian noise with co-
variance σ2

gI about the desired location for the first jaw ĝ1 ∼
N (g1, σ

2
gI). The location of the second jaw is conditionally

dependent on the first ĝ2 | ĝ1 ∼ N (ĝ1 + (g2 − g1), σ2
gI).

The variance σ2
g is set based on repeatability measurements

for a robot gripper [28].
Given a perturbed grasp, we also define a contact point

as the point at which the grasp comes into contact with an
object when following the line segment between the two
parallel jaws. We will refer to the contact configuration for
a perturbed grasp ĝ as c = (c1, c2) where c1, c2 ∈ R2.
Formally, a contact point c is the first zero crossing of
an SDF f that the parallel jaws pass over when following
approach direction v = ĝ1 − ĝ2, where a zero crossing
satisfies |f(c)| < ε for some small user-defined ε ∈ R, ε > 0.
In practice the contacts can be found by testing a discrete
set of points along v for the zero crossing condition [29].
We will refer to the surface normals at contact configuration
c as n = (n1,n2) where n1,n2 ∈ R2.

C. Quality Measures

Force closure is a binary quantity that measures whether
or not a grasp can resist external wrenches (forces and
torques) applied to a grasped object in arbitrary directions
when an object shape is known precisely. The the L1 version
of the Ferrari-Canny grasp metric QF [12], [27] measures
the strength of force closure by the relative magnitude of
wrenches that the gripper would have to exert to resist
external wrenches. Without loss of generality, given a set of
contact wrenchesW ∈ R3 derived from 2D contact locations
c, normals n, and center of mass z, QF (c, n, z) measures
the size of the largest ball around the origin in wrench space
within the convex hull of W [12]. We will use henceforth
use the notation QF (ĝ, f) as shorthand because c, n, and z
can be derived deterministically from a grasp ĝ and an SDF
sample f .

In this work we measure the quality of a grasp using the
probability of force closure PF [22], [23], [25], [40] given
uncertainty in shape and grasp approach. Since force closure
is equivalent to the positivity of QF , we evaluate PF by
checking the sign of QF over samples from the uncertain
quantities, PF = P

(
QF > 0 | g, µ, σ2

)
[40].

D. Grasp Planning Definition

Our goal is to find a grasp g that maximizes PF given a
GPIS mean and variance function µ, σ2:

g∗ = max
g∈G

P
(
QF (ĝ, f) > 0 | g, µ, σ2

)
. (3)

We can evaluate this probability by integrating over the set
of force closure grasps with respect to the distributions on
perturbed grasps ĝ and SDFs f :

PF (g, µ, σ2) =

∫
Ĝ,F

I(QF (ĝ, f) > 0)p(ĝ | g)p(f | µ, σ2).

where Ĝ and F denote the sets of perturbed grasps and SDFs,
respectively.

VI. GRASP OPTIMIZATION ALGORITHM

The algorithm GP-GPIS-OPT (Grasp Planner using GPIS
OPTimization) finds locally optimal solutions of an ap-
proximation to equation 3 using gradient-based optimization
methods with finite differences to compute derivatives [31].

A. Quality Approximation

Direct optimization of Equation (3) requires an integration
over shape samples to evaluate the objective for each grasp,
which may be computationally expensive, especially for high
resolution models. However, we show that the probability of
force closure on the the mean SDF µ, P̃F , may be a reason-
able approximation of PF under the following conditions:

1) The center of mass z is within δ of its expectation
E[z] with high probability, P (‖z− E[z]‖2 > δ) ≈ 0
for some δ > 0.

2) The shape uncertainty along grasp approach v up to
the contact locations c̃i on the mean shape is less than
some small τ > 0, σ2(c̃1) < τ.



We refer the reader to the supplementary file for a formal
description of the approximation.

Empirically we found that the variance of the center of
mass is less than the grid resolution for 7 out of 8 of
the objects in Fig. 1, approximately satisfying condition 1.
To encourage condition 2 to be satisfied we penalize the
uncertainty σ2 by λ ∈ R, λ > 0.

maximize
g∈G

P̃F (g, µ)− λ(σ2(c̃1) + σ2(c̃2)) (4)

High values of λ, which correspond to smaller τ , may in-
crease the accuracy of the approximation for selected grasps
but may discard grasps with high PF . Small values of λ may
increase the set of possible grasps but the approximation
will become increasingly inaccurate. In practice λ can be
set using cross-validation over a set of validation shapes,
similar to choosing a regularization penalty in regression
models [3]. The λ penalty encourages GP-GPIS-OPT to
avoid regions of uncertainty, unlike past algorithms that use
GPIS to encourage exploration [11].

B. Grasp Constraints

Each jaw approaches the object from opposite directions,
so we constrain the grasp contacts on the mean shape to be
antipodal [5]. For unit outward pointing normal vectors n
at contact c and approach direction v = ĝ1 − ĝ2, c is an
antipodal pair if the contacts have (a) opposite normals and
(b) normals aligned with the approach direction [5], [10],
[11]. We convert these constraints to inequalities because on
actual objects there may be very few grasps that satisfy the
definitions exactly:

‖n1 + n2‖22 ≤ α nT1 v ≥ β‖v‖22 −nT2 v ≥ β‖v‖22 (5)

For 2-dimensional shapes the choice of β = cos(arctan(γ))
guarantees that points in the feasible region will be in force
closure for the mean SDF [5], [7], and α may be set using
cross-validation.

C. Grasp Selection Algorithm

Taking the objective of equation 4 and the constraints of
equation 5 yields the optimization objective:

maximize
g∈G

P̃F (g, f)− λ(σ2(c1) + σ2(c2)) (6)

subject to: ‖n1 + n2‖22 < α

nT1 v > β‖v‖22
− nT2 v > β‖v‖22

where c1, c2,n1,n2, and v are derived from candidate grasp
g on the mean shape µ as described in Section V-B.

This problem is non-convex due to the QF quality evalu-
ation and antipodal constraints on the derived contracts and
normals. Therefore we can only expect a local solution to this
problem for a single random initialization. The GP-GPIS-
OPT (Grasp Planner using GPIS OPTimization) algorithm,
detailed in Algorithm 1, repeatedly finds locally optimal
grasps for equation 6 from a user-specified number of ran-
dom initializations Ng and selects the grasp with the highest

objective value. We use Ng = 20, based on the empirical
worst-case time to converge to a solution for a validation set
of 25× 25 GPIS models. The supplementary file shows and
discusses plots of the convergence versus iterations.

GP-GPIS-OPT uses Sequential Convex Programming
(SCP) to find a locally optimal grasp for Equation (6). SCP
iteratively forms a convex approximation to the problem and
solves the approximation within a confidence [34], [42]. SCP
turns non-convex constraints into penalties and iteratively
increasing a penalty coefficient, similar to Interior Point
methods [34]. Although PF is not differentiable everywhere,
we use finite differences to approximate the gradients, as has
been shown to work well empirically for optimizing QF on
deterministic shapes in 3D [31].

1 Input: GPIS Model µ(·), σ2(·), Grid X , and Number
of Initial Grasps Ng
Result: Grasp Proposal g∗ and Objective Value V ∗

2 Initialize mean shape µ(X );
3 Initialize grasp count k = 0 ;
4 Initialize V ∗ = −∞ ;
5 while k < Ng do
6 Sample valid initial grasp g0,k ;
7 Use SCP to find a locally optimal grasp gk for

Equation 6 with objective value Vk ;
8 if Vk > V ∗ then
9 g∗ = gk ;

10 V ∗ = Vk ;
11 end
12 k = k + 1 ;
13 end

Algorithm 1: The GP-GRASP-OPT Algorithm

VII. EXPERIMENTS

A. Dataset

We evaluated the performance of several grasp planners
on a set of 8 objects. Our test set of objects is displayed in
Fig. 1 and the data is available at the URL in the abstract.
The objects chosen illustrate properties which lead to missing
or invalid measurements with an RGBD sensor. Specularity
and transparency can lead to missing measurements, which
appear as black regions in point clouds. For example, the
specular wings of Object D and the metal parts of Object C
and E cannot be sensed by the RGBD camera. Invalid mea-
surements, such as measuring the table behind a transparent
region, occur for Objects A and F. The GPIS for each object
was constructed on a 25×25 grid, chosen for computational
efficiency.

To test our the assumptions of our force closure approx-
imation on this dataset we computed the 95% confidence
regions for the center of mass over the GPIS distribution
for each object. We found that for 7 of the 8 objects this
confidence region was smaller than 1 grid cell, matching
our assumptions. However, for Object G the variance was
approximately 7 grid cells due to high uncertainty around
the body of the squirt bottle.



Fig. 4: Visual comparison of grasps on Objects A, B, C, and D (top to bottom) selected by (left to right) (i) GP-M, which chooses the grasp with highest
QF on the shown mean SDF, (ii) GP-P, which chooses the grasp with the highest probability of force closure PF from 1000 random grasp samples and
(iii) GP-G, our algorithm for selecting grasps using optimization. The Ferrari-Canny quality on the nominal shape QN and PF are listed to the left of
each grasp. We see that GP-G outperforms GP-M in terms of QN ; for example, on Object A GP-M chooses a grasp on the transparent tape dispenser
since the mean shape does not contain this region but GP-G avoids this region due to shape uncertainty. Also, grasps chosen by GP-G are comparable to
those chosen by GP-P in both PF and QN .

B. Grasp Planning

To evaluate the performance of GP-GPIS-OPT, we com-
pared the probability of force closure PF and Ferrari-Canny
grasp quality on the nominal shape QN for 5 competing
grasp selection methods:
• GP-M: Selects g with the highest Ferrari-Canny quality
QF on the mean SDF from 1000 random grasp samples.

• GP-P: Selects g with the highest PF from 1000 random
grasp samples, evaluating each grasp with Monte-Carlo
integration over 1000 shapes [7], [23].

• GP-D: Optimizes PF on the mean SDF µ with finite
differences

• GP-U: Optimizes PF on the mean SDF µ with uncer-
tainty penalty λ, as in Equation (4).

• GP-G: The GP-GPIS-OPT algorithm, as detailed in
Algorithm 1.

GP-M is fast because it ignores shape uncertainty. GP-P
is equivalent to evaluating the objective of GP-G using a
Monte-Carlo integration to approximate PF instead of the
λ penalty. As a result, it selects grasps with higher PF but
may be slow because it can require many SDF samples to
converge [23]. GP-GPIS-OPT is designed to be faster than
GP-P and is also to select grasps with high PF . GP-D and
GP-U are of comparable speed and are presented to evaluate
the use of the uncertainty penalty and antipodal constraints
in GP-GPIS-OPT.

We used a heuristic grasp sampling method for GP-M and
GP-P to encourage sampling of antipodal grasps. We first
sampled a point uniformly at random from the mean shape

Probability of Force Closure PF Runtime (sec)

Object GP-M GP-D GP-U GP-P GP-G GP-P GP-G

A 0.72 0.43 0.13 0.99 0.99 645.5 110.9
B 0.75 0.00 0.02 0.88 0.99 955.8 284.3
C 0.18 0.22 0.02 0.60 0.31 921.9 253.8
D 0.38 0.12 0.57 0.98 0.79 715.8 72.4
E 0.40 0.24 0.32 0.78 0.57 1197.3 253.8
F 0.50 0.39 0.23 0.64 0.67 897.6 215.3
G 0.75 0.00 0.01 0.91 0.37 848.7 84.3
H 0.42 0.47 0.00 0.99 0.93 715.0 85.5

TABLE I: Comparison of the probability of force closure PF for (a) GP-
M, which selects a grasp based on only the mean SDF, (b) GP-D, which
optimizes PF on the mean SDF, (c) GP-U, which optimizes the PF with
an uncertainty penalty, (d) GP-P, which chooses the grasp with highest PF

from a set of 1000 random grasp samples, and (e) GP-G, GP-GPIS-OPT.
GP-G performs as well as GP-P on 3 of 8 objects and selects grasps with
higher PF than methods other than GP-P for all objects. We also compare
the worst-case runtime to converge to a grasp plan for GP-G and GP-P, and
see GP-G is up to 5.7× faster than GP-P averaged over all shapes.

surface. We then randomly chose a grasp direction as either
the surface normal or direction to the center of mass. Finally,
the grasp was set to two points on this line centered around
the shape interior that were exactly wg apart.

The parameters of GP-G, GP-D, and GP-U were Ng = 20
and a grasp approach uncertainty of σ2

g = 0.25 [28]. The
uncertainty penalty of GP-G and GP-U was set to λ = 2.0
based on a grid search using the set of validation shapes. The
sampling-based methods GP-M and GP-P used 1000 random
grasp samples, chosen based on the empirical number of
random samples required for the methods to converge to a
single grasp on the validation set. All experiments were run
in Matlab 2014a on a laptop with OS X with a 2.7 GHz Intel



Fig. 5: Comparison of grasps chosen by our algorithm on Object D, the toy
plane, with different patterns of shape uncertainty: (left to right) uncertainty
in the tips and edges of wings, uncertainty in the entire wings, uncertainty
in the cockpit end of the plane, and uncertainty in both the cockpit and
rudder end of the plane.

core i7 processor and 16 GB 1600 MHz memory. We used
CVX for optimization [17] and our implementations were
not optimized for speed.

Table I compares PF for each of the grasp selection
methods and the runtimes for GP-P and GP-G. While GP-
M is not designed to optimize PF , we include its value for
comparison. The runtimes reported for GP-P and GP-G are
the worst-case runtimes to converge to a grasp plan. For GP-
P this is the time to evaluate 753 grasp samples, the worst
case number observed over all experiments, and for GP-G
this is the time to optimize all Ng = 20 grasps.

We see that GP-G chooses the grasp with the same PF
as GP-P on 4 of 8 objects and the grasp with the highest
PF for methods other than GP-P on 7 of 8 objects. Our
algorithm selects grasps with considerably lower PF than
GP-P on Object G. This may be explained by the high
variance in the center of mass for Object G, which violates
the assumptions made in the PF approximation for GP-G.
GP-G also converges faster than GP-P in the worst case for
all objects, with up to a 5.7× speedup over GP-P averaged
over the objects. See the supplementary file for further details
on the convergence and time complexity of GP-GPIS-OPT.

We illustrate grasps chosen by GP-M, GP-P, and GP-
GPIS-OPT for Objects A-D and compare each by PF and
QN in Fig. 4. We see that GP-M chooses a grasp that is
not in force closure on the nominal (true) shape for several
objects, illustrating the need to take uncertainty into account.
For example, on Object A the grasp chosen by GP-M is not
in force closure because it ignores the tape dispenser, which
cannot be sensed with the depth sensor. However, both grasps
that take into account shape uncertainty are able to avoid the
dispenser and choose a grasp with high PF and QN . We also
see that grasps chosen by our algorithm have higher QN than
GP-M on all shapes.

C. Sensitivity to Shape Uncertainty

Fig. 5 compares grasps chosen by GP-GRASP-OPT with
different patterns of shape uncertainty on Object D, the metal
toy plane. We consider shape uncertainty when Object D has
noise only on the edges of the wings, when the entire wings
are not observed, when the tip of the plane is not observed,
and when both the front and the back are not observed.
Uncertainty in the wings leads to a grasp on the endpoints of
the plane, while uncertainty on the front end of the plane the
algorithm chooses a grasp that leverages a wing and a rear
stabilizer. The algorithm selects the tip of the wings when the
ends of the plane are uncertain, resulting in an unstable grasp.

Fig. 6: Grasps selected in physical experiments on the PR2 for Object A, the
tape dispenser, overlayed on photos. The grasp planned by GP −M fails
to lift the object on 9 of 10 attempts because it collides with the transparent
dispenser, but GP-GPIS-OPT avoids the area due to uncertainty in the object
geometry near the dispenser.

The planner does not choose the concave regions where the
wings meet the body due to the uncertainty penalty, which
encourages the optimization to avoid the region.

D. Physical Grasp Experiments with the PR2

We tested grasps for Object A, a roll of Scotch tape, on
the Willow Garage PR2. We created a GPIS from a point
cloud segmentation of the object from 10 images of a head-
mounted Primesense Carmine as described in Section III-B.
We compared GP-M and GP-GPIS-OPT with Ng = 10 and
λ = 2.0, chosen by grid search. The grasps chosen by these
methods are illustrated in Fig. 6. The grasp chosen by GP-
GPIS-OPT had PF = 0.58 and achieved force closure on 10
of 10 trials. In comparison, the grasp chosen by GP-M had
predicted PF = 0.48 and achieved force closure on only 1
of 10 trials. The failures were due to the gripper contacting
and sliding along the transparent outer surface of the tape
canister, which could not be sensed reliably in either the
depth or color images.

VIII. DISCUSSION AND FUTURE WORK

We presented GP-GPIS-OPT, an algorithm for selecting
parallel-jaw grasps with high probability of force closure
PF on Gaussian process implicit surface representations of
shape uncertainty. Our experiments suggest that GP-GPIS-
OPT plans grasps with higher PF than methods that do
not model shape uncertainty, and it is faster than common
methods for grasp planning with shape uncertainty.

A current shortcoming of GP-GPIS-OPT is the use of an
approximation to PF that introduces a penalty term λ into
our objective. In future work, we will study the effect of
λ on the quality of selected grasps and consider alternative
quality measures. We also plan to study using alternative
methods for optimizing over uncertain quantities, such as
Multi-Armed Bandits [36].

We will also extend our method to 3D objects. Since GPIS
construction scales cubically with the number of grid points
used, we will investigate how to construct GPIS models effi-
ciently using subset selections [16] or local GP models [19].
We are also interested in implementing GP-GPIS-OPT on a
multicore or Cloud Computing framework to further increase
speeds, as it is parallelizable over random initial grasps.
Finally, we are interested in extending our method to multi-
point grasps on 3D GPIS shape representations by optimizing



over joint angles at increasing GPIS resolution and using
forward kinematics to determine contact locations [9].
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