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Abstract—Robotic surgical assistants (RSAs) are enhancing
physician performance, enabling them to perform more deli-
cate and precise minimally invasive surgery (MIS). However,
these devices are currently tele-operated and lack autonomy.
In this paper, we focus on automating a relatively simple but
commonly performed surgical task of tissue retraction, which
involves grasping and lifting a thin layer of tissue to expose an
underlying area. Specifically, we target the problem of computing
an optimal plan and an optimal grasp location for automated
retraction of tissue flaps using a generic 6-DOF gripper. We
use a nonlinear FEM (Finite Element Method) formulation to
compute equilibrium configurations of the tissue flap subject to
manipulation constraints. These configurations are used with a
sampling-based planner to explore the space of deformations
and compute a globally optimal plan. We propose novel cost
metrics which are relevant for evaluating the optimality of the
plans in a clinical setting, including minimizing the maximum
deformation energy, minimizing the maximum tensile stress, and
minimizing the control effort in lifting the tissue flap. We present
experimental results on challenging retraction scenarios that
include obstacle avoidance and heterogeneous tissues.

I. INTRODUCTION

Robotic surgical assistants (RSAs), such as Intuitive Surgical’s
da Vinci R© system [8], are enhancing physician performance,
enabling them to perform more delicate and precise minimally
invasive surgery (MIS). Studies have shown that these robots
can improve procedure success rates, reduce bleeding, and
decrease recovery time [9]. As a result, these robots are in-
creasingly being adopted in hospitals, with over 1,000 installed
worldwide [8]. In their current form, RSAs are tele-operated;
the surgeon performs the medical procedure using an input
device outside the patient, and the robotic device duplicates
the motions of the input device inside the patient (possibly at
a different scale and with smoothed motions). Because of the
dependence on tele-operation, clinically-used RSAs currently
require direct control by physicians, i.e. they lack autonomy.
Integrating motion planning with RSAs has the potential to
enable RSAs to perform certain motions autonomously. In
this paper, we focus on a relatively simple but commonly
performed task: tissue retraction. The goal is to manipulate
an outer layer of tissue to provide the physician with a line of
sight to an area of interest underneath while avoiding contact
with obstacles and nearby sensitive structures (see Fig. 1). The
manipulation must balance competing objectives: manipulate
the tissue to provide sufficient exposure and, at the same time,
avoid excessively large forces that damage the tissues.
Enabling RSAs to autonomously perform sub-procedures like
tissue retraction could have a significant impact on patient
care. Motion planning can provide a form of “auto-pilot” for
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Fig. 1: Tissue retraction procedure: (a) Given an initial grasp
location and a camera viewpoint, the tissue flap is manipulated
by the gripper such that the area of interest (marked by the red
circle) is completely visible (b) Top view of the scene indicating the
configuration of an obstacle in the workspace (which protrudes from
the side and lies above the slab of tissue).

medical robotic devices, enabling them to complete simple,
routine tasks automatically. This has the potential to reduce
surgical errors by enabling the physician to focus on the
important, challenging aspects of a procedure rather than
being distracted by motion control of devices. Autonomous
control would also enable RSAs to simultaneously control
more than the two manipulators that can be directly con-
trolled by human hands, enabling greater dexterity and faster
procedure completion times. The ability to perform motions
autonomously would also facilitate remote surgery in remote
or hostile environments in situations where time lag due to
network limitations prohibits effective tele-operation.
We present an approach to compute plans for automated tissue
retraction using a generic 6-DOF gripper. We consider three
novel optimization objectives relevant to medical applications:
minimizing the maximum deformation energy, minimizing
maximum tissue stress and minimizing the cumulative control
effort. The method uses a nonlinear finite element method
(FEM) to compute equilibrium states of the tissue flap corre-
sponding to sampled gripper configurations. These states are
used to construct a global roadmap to explore the space of
deformations and compute an optimum plan that avoids obsta-
cles. A fast visibility test using occlusion queries on graphics
processing units (GPUs) is used to compute the proportion
of visible area beneath the tissue flap for determining goal
states. Our planner computes trajectories for the gripper to
accomplish the tissue retraction task while avoiding obstacles,
as shown in Fig. 1.

II. RELATED WORK

Robotic Surgical Assistants (RSAs): In the context of med-
ical robotics, tele-robotic or master/slave systems (such as
Intuitive Surgical’s da Vinci R© system [8]) operate under direct



control of the surgeon, allowing for greater precision and
dexterity in difficult to operate environments [8], [14]. A few
fully autonomous systems have been successfully used for
performing surgeries on non-deformable tissue (such as bones)
when detailed quantitative pre-operative plans of the procedure
are available [26]. Our approach proposes to autonomously
perform the task of tissue retraction for deformable tissues.
Modeling of Deformable Objects: Physically-based simu-
lation of deformable objects is a well-studied area in solid
mechanics [27] and computer graphics [21]. The choice of the
underlying model is application-specific and has a substantial
influence on the physical accuracy of the estimated deforma-
tions. Lumped mass-spring systems are easy to implement and
can be simulated efficiently but there is no intuitive relation
between the spring constants and physical material properties
[21]. Finite Element Methods (FEM) are based on the the-
ory of continuum mechanics [27] and simulate deformations
accurately at the cost of increased computational complexity.
Nonlinear FEM models are preferred when the correctness of
the simulation is important and have been successfully used
for simulating soft tissue for surgical simulations [23], [22].
Motion Planning and Manipulation of Deformable Objects:
Robot motion planning and manipulation are active areas
of research and have historically focused on robot motion
planning and manipulation for robots composed of rigid links
operating in environments with rigid objects [19]. Recent work
has begun to explore motion planning for deformable robots
in static environments. Lamiraux et al. [18] developed the f-
PRM framework to plan paths for flexible robots of simple
geometric shapes such as surface patches or simple volumetric
elements. Bayazit et al. [5] use a two-tier approach based
on probabilistic roadmaps (PRM) and free-form deformation
(FFD) to plan paths for deformable robots. Gayle et al. [12]
use a constraint-based motion planning scheme for deformable
objects modeled as mass-spring systems. Rodriguez at al. [24]
use rapidly exploring random trees (RRT) to plan for robots
in completely deformable environments. Frank et al. [11] use
co-rotational linear FEM with a PRM-based planner to achieve
significant speedups for path planning in deformable environ-
ments. Motion planning algorithms have also been developed
for clinical applications, including deformable robots traveling
through body cavities [12], deformable linear objects [20] and
flexible needle devices traveling through deformable tissue [4].
Prior work on robot grasping and manipulation have generally
assumed that the grasped object is rigid [6]. Howard et al. [16]
model deformable parts using a mass-spring model and use a
neural network to control the gripper. Hirai et al. [15] propose
a robust control law for local manipulations of deformable
parts using tactile and video feedback. We address the problem
of motion planning for constrained deformable objects, subject
to contact and manipulation constraints.
In concurrent work to ours, Jansen et al. [17] propose a
geometric approach to compute candidate grasp locations
and optimal trajectories for automated tissue retraction. This
computationally fast approach considers a 2D cross-sectional

Fig. 2: System Overview: The PRM-based global planner (Planner)
relies on the deformable body simulator (Simulator) to compute
static, equilibrium states of the tissue flap corresponding to randomly
sampled gripper configurations and generate an initial roadmap. The
roadmap is queried for an optimal plan based on the chosen cost
metric, which is then (lazily) checked for validity using the Simulator.
Notation for input/output explained in Sec. III.

model of the tissue flap and computes trajectories for the
gripper in a plane. In contrast, our approach works with a
fully 3D tissue flap model and handles generic contact and
manipulation constraints, and searches for optimal solutions
in constrained environments containing obstacles that need to
be avoided while performing the procedure.

III. PROBLEM STATEMENT

We assume that the geometry of the tissue flap is known from
data obtained from medical images or other sensors. We model
the tissue as a 3D deformable body M (represented as a
tetrahedral finite element meshMref for simulation purposes).
For simplicity, it is assumed that M has known material
properties (which may be heterogenous throughout the volume
of the tissue). We model the robot gripper as a rigid 6-DOF
gripper with a non-zero surface area of contact. Let qi be the
configuration of the gripper in SE(3).
We do not plan for the motion of the actuators or the link-
ages but only consider their cumulative effect on the gripper
manipulating the tissue flap. We assume that the tissue moves
slowly as it is manipulated by the gripper and this process
can be approximated as a quasi-static process and dynamics
is currently ignored. We also assume that the motion of the
gripper and the subsequent deformations of the tissue flap
are completely deterministic; we plan to consider the effects
of uncertainty due to factors such as material parameters,
actuation or slippage in future work.
It is important to address the notion of optimality for tissue
retraction since exerting excessive forces at the gripper and
large deformations of soft tissue can cause irreversible damage
such as tearing of tissue. We propose the following cost
metrics for computing optimal plans:



• Minimizing the maximum deformation energy: The
total deformation energy of a deformed body provides a
quantitative measure of the extent of its overall defor-
mation. In a clinical application, paths that involve high-
energy intermediate states may introduce plastic defor-
mations and other cause irreversible tissue damage. Paths
with lower deformation energies will be less susceptible
to these effects.

• Minimizing the maximum tensile stress: The maximum
tensile stress encountered in the deformed body repre-
sents an upper limit to the forces that can be applied to
deformable objects without causing phenomena such as
tearing and fracture (also known as the yield point) [27].
Minimizing this quantity helps discard states that are very
close or beyond the yield points, resulting in safe plans.

• Minimizing the total control effort: The effort expended
in performing the task, which we define as the total
control effort, is a combination of the total deformation
energy and the gripper displacement (measure of mechan-
ical effort). This metric balances the search between two
competing objectives: minimizing the deformation energy
of the intermediate states along the path and minimizing
the total mechanical effort in executing the plan.

The choice of the cost metric depends on several factors such
as maneuverability of the gripper in the workspace and type
of tissue involved in the retraction task, and is determined by
the surgeon during the procedure.
The problem can now be formally stated as follows:
Objective 1: To determine a feasible plan in terms of the
control inputs (configurations encoding both the position and
orientation of the gripper), such that the area of interest
beneath the tissue flap is completely visible, while minimizing
the chosen cost metric.
Input: Initial configuration of the gripper q0, tissue flap mesh
in its reference state Mref, area of interest beneath the tissue
flap A, fixed camera viewpoint V , description of the envi-
ronment (set of obstacles O) and tissue material parameters
(Young’s modulus E, Poisson’s ratio ν and density ρ).
Output: An optimal trajectory (discrete sequence of controls)
P = (q0,q1, . . . ,qn) of the gripper to manipulate the tissue
flap and perform the retraction procedure.
Objective 2: The above framework (Fig. 2) assumes that
the initial grasp location of the gripper is known. It can be
generalized to also compute the optimal grasp location for the
gripper qopt

0 , which minimizes the cost metric over all possible
grasp locations for a given scenario.

IV. MANIPULATION AND PATH PLANNING

The two key components of our approach are the sampling-
based global planner (Planner) and the nonlinear finite element
simulator (Simulator) as shown in Fig. 2. For each randomly
sampled configuration of the gripper qi ∈ SE(3) generated
by the planner, the simulator computes the corresponding
deformed equilibrium state of the meshMi subject to contact

and manipulation constraints (Sec. V). These gripper configu-
rations, coupled with corresponding equilibrium mesh states,
are used to explore the space of deformations and compute an
optimal plan (Sec. IV). It should be noted that even though
the planner is essentially independent of the simulator, the
accuracy, correctness and speed of computation of the results
is implicitly dependent on the choice of the simulator.

A. Generating Valid Samples

Manipulation Constraints: The tissue flap mesh M is as-
sumed to be anchored at a subset of nodes (usually along
one or more edges of the flap) and can be manipulated by
specifying a non-zero displacement of the grasped nodes along
the unconstrained edges of the flap boundary. To account for
a realistic grip, we constrain multiple nodes on the surface of
the flap at the gripper location.
Manipulation constraints of the gripper are generated by
randomly sampling configurations qi ∈ SE(3) of the 6-
DOF gripper. All the nodes that lie within the bounding
box of the gripper jaws are fixed. For a given sample qi,
their displacement is computed by applying the transformation
given by qi to their positions in the reference state Mref.
An equilibrium mesh state Mi corresponding to the gripper
configuration qi can then be computed (Sec. V).
Checking Mesh Validity: We consider a mesh state Mi

(and corresponding configuration qi) to be valid if the final
topology of the mesh is valid (i.e. no inverted elements or
self-penetration). We use Tetgen [2] to discretize the mesh
and reliably detect self-penetration.
Sample Optimization: Since the gripper configuration qi is
sampled randomly, high stresses might build up in the elements
constrained by the gripper (as shown in Fig. 3(a)), resulting in
undesirable high-stress states. For every valid sample gener-
ated, we perform a local gradient-descent based optimization
on the rotation of the gripper (while keeping its position in R3

constant) to alleviate the stress on the constrained elements (as
shown in Fig. 3(b)). Our experiments indicate that fewer states
are eventually required in the roadmap to compute a feasible
plan if this local improvement is applied.

(a) (b)

Fig. 3: Local optimization: (a) High stresses build up in the elements
constrained by the gripper corresponding to a randomly gener-
ated configuration (b) Local gradient-descent based optimization is
performed on the gripper rotation to minimize the stresses in the
constrained elements.



User-Guided Heuristic Sampling: The pre-processing time
involved in computing equilibrium mesh states (corresponding
to randomly sampled gripper configurations) is prohibitive. A
user-guided heuristic sampling scheme is adopted to reduce
this computation time. The user (surgeon in this case) indicates
a probable retraction path for the gripper. In our experiments,
the user indicates a final gripper position (in R3) and the
trajectory is specified as a straight line joining the initial and
user-specified gripper position. The user can also choose to
specify the trajectory in terms of multiple way-points. The
samples qi are generated in a user-defined neighborhood of
this trajectory. It should be noted that the quality of the final
solution obtained will depend on the user-specified trajectory
and the choice of neighborhood distribution.

(a) (b)

Fig. 4: User-guided heuristic sampling: (a) User (surgeon) specifies
an estimate of the final position of the gripper and a simple trajectory
is obtained by connecting the initial and user-specified gripper
position (in R3) by a straight line. (b) Gripper configurations qi

are sampled within a user-defined neighborhood of the trajectory.

B. Computing Visibility

The objective of the retraction task is to expose an area of
interest A from the given camera viewpoint V and a mesh
stateMi is designed as a goal state if A is completely visible
from the given viewpoint.
There are two primary types of methods to compute visibility.
Object-space methods intersect the view frustum of the camera
with primitives in the scene and compute the exact area visible
from the given viewpoint. They are exact but computationally
expensive. Image-space methods compute the area visible in
terms of pixels, when the entire scene is rendered as an image
from the camera viewpoint. They are approximate but fast,
and there is no need to determine the camera parameters
in advance. The pixel accuracy suffices since we are only
interested in the exposure of a pre-defined area of interest.
We implemented the visibility computation using occlusion
queries on graphics processing units (GPUs) [1]. Based on
results of the visibility tests, we identify the set of goal mesh
states Mg : {M(1)

g , . . . ,M(m)
g } (and corresponding gripper

configurations Qg : {q(1)
g , . . . ,q(m)

g }).

C. Constructing the Roadmap

A PRM-based planner can be used to compute a plan from the
start configuration qs and a set of goal configurations Qg . We

also store the mesh state Mi along with each sample qi for
the purposes of computing the distance metric defined below.
Distance Measure: We use a heuristic distance measure [18]
for selecting the nearest neighbors of a sample. If Mi and
Mj are the mesh equilibrium states corresponding to config-
urations qi and qj , then the distance measure is defined as
d(qi,qj) = dD(Mi,Mj) + dC(qi,qj), where dD(Mi,Mj)
is the DISP distance metric defined as the maximum length
over all displacement vectors for each node on the surface of
Mi toMj and dC(qi,qj) is the distance metric between two
configurations defined for the SE(3) group [19]. Attempts to
weight dD and dC have not yielded better results but we found
that using only dD works reasonably well.
Local Planning: A path can be defined between two samples
represented by configurations qi and qj by linearly interpolat-
ing between the two configurations in SE(3) [19]. The edge
connecting any two samples in the roadmap is considered to
to be valid if each of these intermediate mesh states is valid
(Sec. IV-A) and if both the mesh and the gripper do not collide
with any obstacles in the workspace. We use PQP [13] for
collision detection with obstacles.

D. Assigning Roadmap Edge Weights

The cost metrics outlined in Sec. III are used for assigning
weights to edges in the roadmap and are computed as follows:
Minimizing maximum deformation energy: The cost of an
edge is set to be the maximum deformation energy encoun-
tered as the gripper moves from configuration qi to qj . The
total energy of a single tetrahedral element τ is given by the
sum of the internal elastic energy stored in the tetrahedron
and the work done by the applied external forces fext on each
of the nodes η ∈ Ni. The total deformation energy Πi of the
mesh stateMi is: Πi =

∑
τ∈Mi

v(τ)·W (E)+
∑
η∈Ni

fηext ·uη ,
where v(τ) is volume of the tetrahedron τ , uη is displacement
of node η, E is the Green strain tensor, W (E) is the energy
density function for the chosen material model [27], [22].
Minimizing maximum tissue stress: The cost of a roadmap
edge is chosen to be the maximum stress encountered as the
gripper moves from qi and qj . For a tetrahedron τ ∈Mi, let
σi(Sτ ), i ∈ {1, 2, 3} be the ith eigenvalue of the second Piola
stress tensor Sτ Positive eigenvalues correspond to tensile
stresses and negative one to compressive stresses. Since Sτ
is real and symmetric, it will have three real, not necessarily
unique, eigenvalues. The maximum stress in τ is then given
by max(abs(σi))), i ∈ {1, 2, 3} and the yield condition (from
maximum principal stress theory) [27] states that yield (tearing
in this case) occurs when this value is greater than the tensile
yield strength of the material.
Minimizing control effort in lifting tissue flap: We express
the total control effort C using the metric defined in Moll
et al. [20] along a specified path (q1, . . . ,qn) as: C =∑n−1
i=1 d(qi,qi+1)(Πi + Πi+1)/2). A better approximation of

this integral can be obtained by considering a larger number
of subdivisions along the path.



E. Computing Optimal Plans

The local planning requires running the simulation along the
interpolated path and is a computationally expensive process.
To reduce computation times, we use a lazy local planning
scheme [7]. An initial estimate of the roadmap (constructed by
assigning estimates of edge weights as described) is searched
for a minimum-cost path from qs to Qg . The local planner
is then invoked to check if all the edges along the path are
valid. Any invalid edges are discarded and the valid edges
are marked as processed and their edge weights updated. This
process is repeated till a valid (optimal) plan is obtained or
no solution is found. Since our method relies on probabilistic
roadmaps to search for a valid solution, it is probabilistically
complete. As the number of samples generated in the pre-
processing phase increase, the solution converges to the true
optimal.
We use the Dijkstra’s shortest path algorithm for searching
for an optimal path from q0 to Qg for additive metrics
(such as minimizing the total control effort). The problem of
minimizing the maximum edge weight in an acyclic graph (the
edge weight is the deformation energy or tissue stress in our
case) is referred to as Bottleneck Shortest Paths problem [3]
and can be solved by a minor modification to the Dijkstra’s
shortest path algorithm.
Since the paths generated by PRM-like methods are not
necessarily short or smooth, we use an iterative shortening
and smoothing scheme to improve the final solution. Given
a solution path comprising of discrete gripper configurations,
P = (q1, . . . ,qn), the final continuous sequence of controls
is obtained by interpolating between the configurations qi
using a cubic spline [10] to maintain C1-continuity between
configurations.

V. SIMULATION OF TISSUE FLAP RETRACTION

Simulating soft tissue is challenging since it must provide con-
vincingly realistic visual and haptic response to manipulations
such as grasping, pulling and cutting. We chose to model
tissue deformations using nonlinear continuum mechanics
(FEM) to account for large tissue deformations. The tissue
itself is assumed to be isotropic, nearly incompressible and
exhibits hyper-elasticity according to the St. Venant Kirchhoff
material model (commonly chosen to represent bio-mechanical
deformable objects [23], [22]). We refer the reader to [27] for
an introduction to nonlinear FEM.
The equilibrium configuration of the tissue mesh is determined
by balancing all global external forces fext with all internal
elastic forces Φ(u), where u represents the global displace-
ment of all the nodes N in the mesh and Φ is a (possibly
nonlinear) function describing the internal elastic forces as a
function of the nodal displacements u.
Assembling External Forces: The tissue flap is subject to
external forces exerted by gravity as well as other contact and
manipulation constraints. To compute gravitational forces, we
use a lumped mass formulation [23]. Contact with the under-

lying base (modeled as a plane in our experiments) is handled
by a penalty-based scheme where reaction forces proportional
to the penetration depth of the intersecting nodes, attempt to
resolve the collision. More sophisticated collision resolution
schemes could also be used [11]. We do not consider the
interaction forces and stick-slip friction between the gripper
and the tissue flap.
Assembling Elastic Forces: The elastic force acting on a
node is given by the negative gradient of the elastic energy
in the element with respect to the nodal displacement. The
total elastic force acting on a node is obtained by summing up
the elastic forces exerted by all the individual tetrahedra that
are incident to the node. We follow the approach suggested in
[22] for computing elastic forces. We also add penalty forces
to each node of the tetrahedron proportional to the variation in
the volume of the tetrahedron as suggested in [23]. This allows
us to model the nearly incompressible nature of soft tissue and
to prevent inversion of tetrahedra under strong constraints.
Solving for Static Equilibrium: The tissue flap is assumed to
be anchored at a subset of nodes (usually along one or more
edges along the boundary of the mesh) and is also manipulated
by the gripper. Let Nfix denote the set of constrained nodes
that have a fixed displacement. This set comprises of both
anchored nodes (which have zero displacement) and grasped
nodes (the displacement of which is determined by the gripper
configuration qi). The equilibrium state of the mesh Mi

corresponding to the gripper configuration qi is now given by
solving the (reduced) system of equations, Φ̃(ũ) = f̃ext, where
ũ now represents the global displacement of all the nodes in
the set N \ Nfix and f̃ext represents the external forces acting
on the corresponding nodes. We solve this system of equations
using an iterative nonlinear conjugate gradients solver [25].

VI. RESULTS

The planner was implemented in C++ and tested on a 3.2 GHz
8-core Intel R© i7TM workstation.
We use a rectangular tissue flap model of dimensions 5 cm
× 5 cm × 0.25 cm for our experiments. The tissue flap is
discretized into linear, tetrahedral elements and the resulting
mesh contains 1300 nodes and 4000 elements. The tissue
density ρ is set to 1000 kg/m3, Poisson’s ratio ν to 0.45
and Young’s Modulus E is set to 1 Mpa (unless otherwise
specified). Gravity acting on the tissue flap is set to 9.8
m/s2 acting downwards. We tested our method on two tissue
retraction scenarios:
Scenario 1: Fig. 5 shows an incision in the tissue from an
overhead viewpoint. The tissue is assumed to be homogeneous
throughout with a Young’s Modulus (E) of 1 MPa. The
objective here is to part the two tissue flaps to expose an arbi-
trarily shaped area of interest while minimizing the maximum
deformation energy and avoiding the obstacle. Since the two
tissue flaps are symmetric in the initial boundary conditions
(each tissue flap is anchored along three edges), equilibrium
mesh states are computed in the pre-processing stage for a
single tissue flap. The optimal initial grasp configuration qopt

0



is obtained by performing an exhaustive search over a set of 5
possible initial grasp configurations along the free edge of each
tissue flap. The trajectories of the grippers are then computed
by our framework independently for the two tissue flaps. Fig.
5 shows the optimal initial grasp positions and the retraction
trajectories of the grippers.
Scenario 2: Fig. 6 shows a complex scenario in which the
tissue flap is anchored along two of the edges and the gripper
is allowed to grasp the flap anywhere along the other two free
edges. An obstacle protrudes from the side and extends over
the tissue flap. The tissue flap is modeled as a heterogeneous
structure with veins running through its entire length. The
veins are stiffer in comparison to the surrounding tissue. In
our implementation, we use a threshold image of the tissue
texture to segment the vessels and assign appropriate tissue
parameters to the mesh elements in the flap. In this experiment,
we set the Young’s Modulus for the veins to be 1 MPa and for
the surrounding tissue to 250 KPa. The optimal initial grasp
configuration qopt

0 is obtained by performing an exhaustive
search over a set of 9 possible initial grasp configurations.
Figures 6 and 7 show the optimal grasp locations and the
retraction trajectories for the gripper when the cost metric
aims to minimize the maximum stress and the control effort
respectively. In both cases, the gripper must pull the tissue to
avoid obstacle intersection.

Lazy planning
Scen- Num Sample Collision Mesh FEM Total
ario samples generation detection validation sim

(hrs) (secs) (secs) (secs) (secs)

1 1000 1.212 (± 0.149) 0.563 24.94 7.113 32.713 (± 5.98)

2 1000 3.027 (± 0.225) 1.803 32.85 48.147 83.316 (± 38.98)

TABLE I: Performance of our approach. Provided times are av-
eraged over multiple initial grasp locations q

(i)
0 . Standard deviation

times are provided in brackets. Times reported are for parallel sample
generation (using OpenMP) and serial (lazy) planning.

Random User-guided Metric
sampling sampling RMS error

Scen- Num Sample Num Sample Min. Min.
ario samples generation samples generation maximum maximum

(hrs) (hrs) energy stress

1 1000 1.212 (± 0.149) 200 XXX (± YYY) XXX XXX

2 1000 3.027 (± 0.225) 200 XXX (± YYY) XXX XXX

TABLE II: Comparison of random sampling and user-guided sam-
pling schemes. The last column reports the RMS error in the chosen
cost metric for the user-guided sampling scheme (as compared to the
random sampling scheme).

VII. CONCLUSION

We have described a framework for automating the task of
tissue retraction in robot-assisted surgical procedures. Given a
model of the tissue flap, a nonlinear FEM simulator generates
equilibrium mesh states corresponding to randomly sampled
gripper configurations. These can be used with a sampling-
based motion planner to compute an optimal sequence of
controls for the gripper. We demonstrated the method for
three metrics: minimizing the maximum deformation energy,
minimizing maximum stress, and minimizing the control effort

in lifting the tissue flap. The method is directly applicable to
arbitrary shaped tissue flaps.
In future work, we plan to improve the speed of the method
by improving the simulation. Recent research in deformable
body simulation (such as modal analysis [27]) can be used
to achieve significant speedups. Another important issue that
needs to be addressed is the discrepancy in the results ob-
tained and observed tissue behavior due to uncertainty in the
chosen material parameters, gripper actuation or tool-tissue
interaction. A global roadmap provides an excellent starting
point in terms of incorporating this uncertainty (similar to
the Stochastic Motion Roadmap framework suggested in [4]).
Empirical data obtained from tool-tissue interaction studies
can be incorporated for modeling realistic gripper forces.
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