Category-based task specific grasping

OFFLINE part
- Generation of task-specific grasps
 - Stability weights
- Optimization
 - \(\arg \max_X P(X) \)
 - "Good" grasp

ONLINE part
- Registration of a new object
 - Fitting weights

1. Training stage (in GraspIt! simulator)
 - Training set: objects of the same category ("mugs", "tools" from CGDB)
 - Generate reference grasps per each model in category using Barrett Hand model ("top", "side", "handle")
 - Store stability quality metric (epsilon QM)

2. Registration of a new object
 - Get point cloud of a new object from a single RGB-D image using Kinect sensor
 - Transform training models into point clouds
 - Perform the registration using Point Cloud Library:
 - Extract key points and calculate local descriptors (Fast point Feature Histograms)
 - Apply Iterative Closest Point approach
 - Obtain fitting scores from registration

- Each task-specific grasp is parameterized by 6DOF pose \(X \) and represented by weighted density function (Gaussian or Laplace distributions)
- To find an optimal grasp we maximize the expected probability of grasp \(X \):
 \[
 \arg \max_X P(X) = \sum_i P(\varepsilon_i) P_i(X)
 \]
 - \(P(\varepsilon_i) \) - the probability of the new object to match the training object \(i \)
 - \(P_i(X) \) - the probability of the grasp \(X \) to be stable on the training object \(i \)

- The method outperforms classical most similar model’s grasp approach (“best single”) resulting in more stable grasps
- The method can generalize for similar in shape objects from other categories