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I. INTRODUCTION

Many robotic systems deal with uncertainty by performing
a sequence of information gathering actions. Unfortunately,
it is not only NP-hard to solve optimally, but also NP-hard
to approximate better than logarithmically [3].

Instead, many successful systems perform a shallow
online search, optimizing for a specified metric on the
resulting belief distributions. One often used metric, known
as information gain, maximizes the expected decrease in
Shannon entropy [2, 5, 1, 18, 6, 4, 12, 9, 15]. Shannon
entropy measures the amount of uncertainty in a distribution.
Thus, minimizing this is useful if the objective is to remove
all uncertainty. In our prior work, we formulate a similar
metric for manipulation, with the goal of finding the
location of an object from an uncertainty distribution
over pose. Notably, we prove our metric produces near-
optimal sequences when selecting actions greedily, whereas
optimizing Shannon entropy may not [13].

In many robotics problems, you don’t need to reduce
uncertainty completely - you simply need to reduce it
enough to accomplish your task. Optimizing for a task-
driven criteria directly enables the system to utilize fewer
information gathering actions than reducing all uncertainty.
For example, Hsiao [11] found that optimizing for probability
of success outperformed optimizing for reducing Shannon
entropy. In decision theory, value of information (VoI) [10] is
a commonly used metric which attempts to capture this idea.

In our current and ongoing work, we formulate an
objective for task-driven uncertainty reduction. We design
metrics which are adaptive submodular [7], rendering the
greedily policy with this metric near-optimal. We present
the formalization of this idea for touch based localization,
and an algorithm with near-optimality bounds published
recently [14]. Additionally, we present our newly developed
formulation, which is significantly faster to compute.

II. FORMULATION

As a running example, consider the task of pushing a
button on a microwave, where the pose of the microwave
is unknown. We suppose we have a prior discrete set of hy-
potheses representing uncertainty. Additionally, we have a set
of button-pushing actions we can perform, which we call de-
cisions. Each of these decisions will accomplish our task on
a subset of the hypotheses. We call this subset a decision re-
gion. Note that a button pushing action may succeed for many

object positions - thus, we do not need to reduce uncertainty
completely, but just enough to accomplish our ask. See Fig. 1.

To gather information, we generate set of tests we
can perform. In our button-pushing task, we use guarded
moves [17], where the end effector moves along a path
until contact is sensed. These tests operate on the space of
hypotheses - that is, a test and the corresponding observation
either keeps or removes each hypothesis. If the observation
is consistent with that hypothesis, e.g. for a guarded
move [17], we would have felt contact if the object was at the
hypothesized location, we keep it. Otherwise, that hypothesis
cannot be true, and as such is disproven and removed.

Our goal is to adaptively select a sequence of tests
such that after performing those tests and receiving
observations, all consistent hypotheses are encapsulated by
one single decision region. We call this the Decision Region
Determination (DRD) problem. See Fig. 2.

III. CONTRIBUTION OVERVIEW

Which tests will help us make a decision? We have
developed two metrics capturing this idea. For both, we prove
that our metric is maximized iff all consistent hypotheses are
encapsulated by one decision region. Additionally, both met-
rics are adaptive submodular, rendering the greedy algorithm
near-optimal. They differ in the computation time of each
metric, and the specific approximation bound they achieve.

Concretely, each approximation bound is of the form:

C(πG) ≤ αC(π∗)

where πG is the greedy policy with our metric, π∗ the
optimal policy, C(π) the cost we want to minimize, and α
the algorithm-specific bound, which we will present below.

A. Hyperedge Cutting (HEC)

We know that if a single decision does not succeed for a set
of hypotheses, some of those hypotheses must be disproven
prior to making a decision. Our approach considers a par-
ticular hypergraph, which we call the Splitting Hypergraph,
where hyperedges correspond to these sets. A hyperedge
is removed by disproving any hypothesis that it connects.
Our objective function is to maximize, in expectation, this
hyperedge removal. We call this approach Hyperedge Cutting
(HEC). Importantly, all hyperedges are removed iff all con-
sistent hypotheses are encapsulated by one decision region.

We compute this edge removal by evaluating a particular
polynomial, which exhibits additional structure. In particular,
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Fig. 1: Touch based localization for pushing the button of a microwave. Given hypotheses over object location (a), decision actions are generated. The
corresponding decision regions are computed by forward simulating to find hypotheses for which it would succeed (b). Decision regions will overlap.
In (c), we see two regions (blue and grey) and their overlap (yellow).

Fig. 2: An overview of the DRD setup. Hypotheses are shown as black dots, decision regions as colored circles, and tests as black lines. We start
(left) with a prior set of hypotheses, and a set of decisions we might make. Each test can result in some observations (center), where we keep hypotheses
consistent with that observation. We repeat this process until all remaining hypotheses are encapsulated by a decision region (right).

it can be exactly expressed as a sum of complete
homogeneous symmetric polynomials, which can be
computed efficiently. This insight enables to us utilize a
more efficient algorithm.

For this algorithm, our approximation factor is α =
k ln(1/pmin)+1, where k is a constant corresponding to the
amount of overlap between regions, and pmin is the minimum
prior probability of any hypothesis. Empirically, our results
indicate that it outperforms similar algorithms for these tasks.
See [14] for those results, and a specific definition of k.

Unfortunately, this metric can be slow to evaluate, even
with our utilization of complete homogeneous symmetric
polynomials. It is exponential in our constant k. Thus,
when we have large overlap between regions, this constant
becomes large and the algorithm intractable.

B. Noisy-Or
Suppose we have m decision regions. Instead of

constructing one hypergraph over all decision regions, we
will construct m objectives, one for each region. Each
objective is maximized iff all remaining hypotheses are
within the corresponding region. More specifically, each
objective is an instance of EC2 [8], which handles the case
of separated decision regions. The total objective function
consists of using noisy-or formulation over each objective,
such that the total objective is maximized if any objective is
maximized (objective 1 is maximized, or objective 2, or. . . ).

This algorithm is linear in the number of decision
regions. Maximizing this has an approximation factor is
α = 2m ln(1/pmin) + 1, where the factor m is a result of
taking the product of m EC2 instances.

However, we note that some instances of EC2 can be
combined. We show that solving for which instances can be
combined is equivalent to solving a graph-coloring problem,
where each color corresponds to an instance of EC2. One can
show that every graph can be colored with one more color
than the maximum vertex degree using the greedy algorithm
[16]. In our DRD problem, the maximum vertex degree is
a constant k̂ corresponding to the overlap between regions.
It is similar to k for HEC, though k ≤ k̂. This formulation
has an approximation guarantee α = 2k̂ ln(1/pmin) + 1

In practice, this algorithm is significantly faster than HEC,
at the cost of only a small increase in query complexity.
Furthermore, it can solve problems with high region overlap,
which HEC cannot. Our preliminary results indicate that this
algorithm is well suited for use in touch based localization.
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