Action-Based Models for Belief Space Planning

Li Yang Ku, Shiraj Sen, Erik G. Learned-Miller, and Roderic A. Grupen University of Massachusetts Amherst

Goal - Address the dual problems of modeling and reasoning by employing an action-based model grounded in the robot's own actions and perceptions. Minimum Entropy Planner

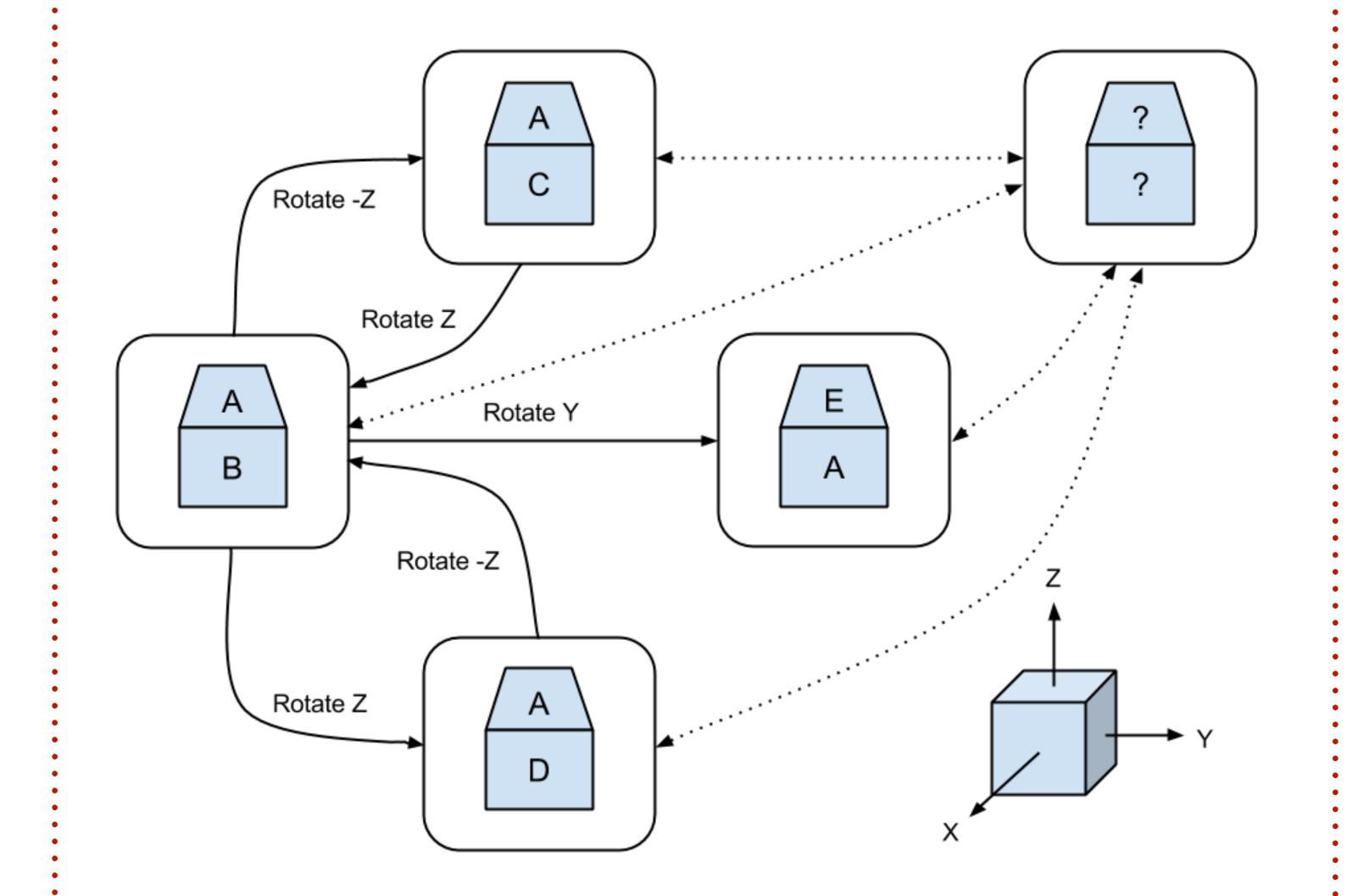
• The action a_t that minimizes the expected entropy over the random variable O_T representing the object identity is selected.

• Future observation is estimated through object models created from past observation.

• An ATG is a directed graph $G = (\mathcal{X}, \mathcal{U})$, composed of a set of aspect nodes \mathcal{X} connected by a set of action edges \mathcal{U} .

Aspect Transition Graph (ATG)

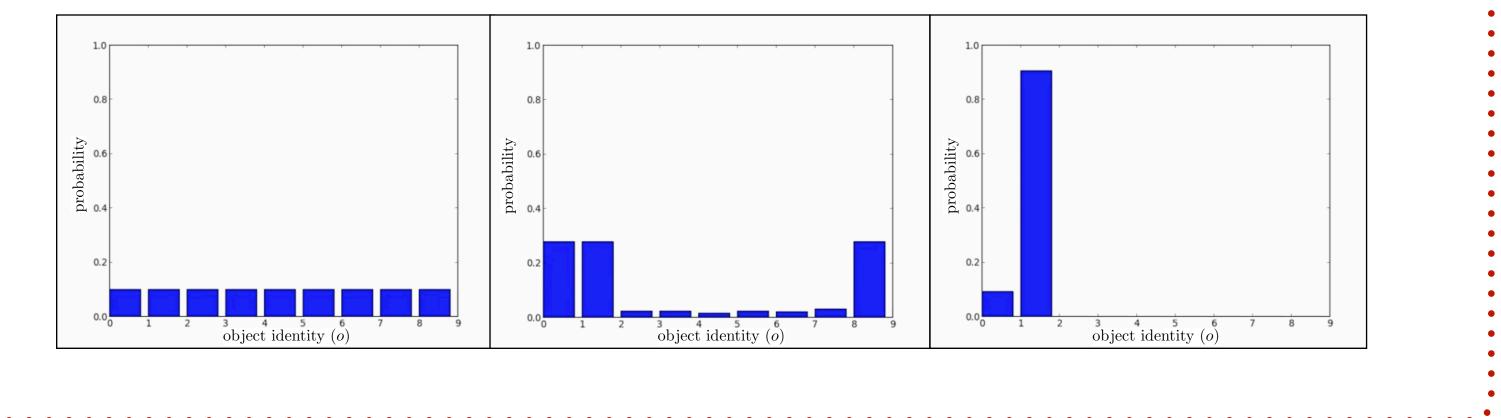
• Each aspect node $x \in \mathcal{X}$ represents the properties of an object that are measurable given a set of sensor parameters.



$$\operatorname{argmin}_{a_t} E(H(O_T | z_{t+1}, a_t, z_{1:t}, a_{1:t-1}))$$

=
$$\operatorname{argmin}_{a_t} \sum_{z_{t+1}} H(O_T | z_{t+1}, a_t, z_{1:t}, a_{1:t-1}) \times$$

$$p(z_{t+1} | a_t, z_{1:t}, a_{1:t-1}).$$



Simultaneous Object Modeling and Recognition

• The robot builds up a set of object models through interacting with random objects one at a time.

Learning Models

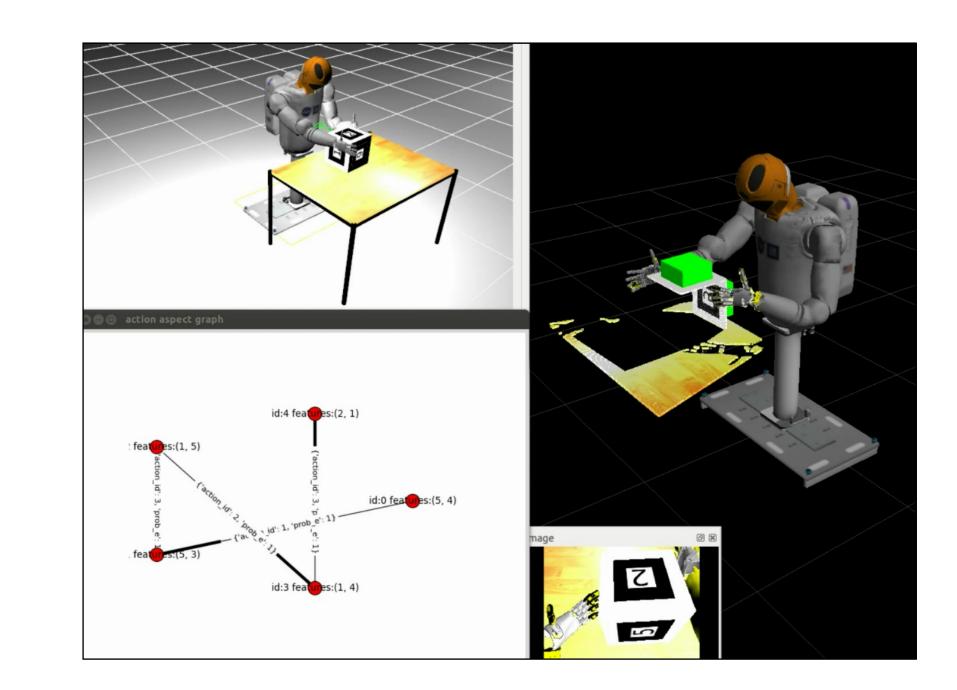
- An ATG is added to the robot memory \mathcal{M} only if the presented object has not been presented to the robot in the past.
- Given a sequence of observations $z_{1:t}$ and actions $a_{1:t}$ during trial T, the probability that the presented object O_T during trial T is novel can be calculated;

$$p(O_T \notin \mathcal{S}_{T-1} | z_{1:t}, a_{1:t}, \mathcal{M})$$

$$= \sum_{o_i \notin \mathcal{S}_{T-1}} p(O_T = o_i | z_{1:t}, a_{1:t}, \mathcal{M})$$

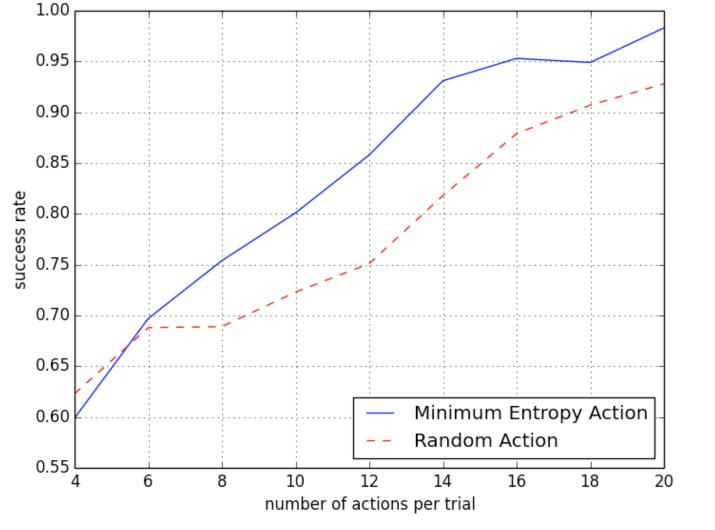
$$= \sum_{o_i \notin \mathcal{S}_{T-1}} \sum_{i \in \mathcal{N}} p(x_i | z_{1:t}, a_{1:t})$$

• Evaluated based on whether the robot can identify novel objects or recognize which object it corresponds to in memory.



Experiment Results

• Each test involves 100 trials and



 $\sum P(x_t|z_{1:t}, a_{1:t}).$ $o_i \notin \mathcal{S}_{T-1} x_t \in \mathcal{X}_i$

Notation	Definition		
x_t	the aspect at time t		
z_t	the measurement data at time t		
a_t	the control data at time t		
\mathcal{M}	the current robot memory		
O_T	the object given to the robot at the T th trial		
O_j	the object labeled id j		
\mathcal{S}_T	the set of objects given to the robot up to the T th trial,		
	$O_i \in \mathcal{S}_T i = 1 \dots T$		

starts with an empty robot memory \mathcal{M} .

• The efficiency of the planner is tested against a random policy.

Test	Correct	Correct	Success
	Identification	Recognition	Rate
1	100/100	34/34	100%
2	98/100	32/32	98%
3	98/100	40/40	98%
4	99/100	37/37	99%
5	99/100	32/32	99%
average	98.8%	100%	98.8%

