
Learning Dynamic Manipulation Skills under
Unknown Dynamics with Guided Policy Search

Sergey Levine and Pieter Abbeel
Department of Electrical Engineering and Computer Sciences, UC Berkeley

E-mail: svlevine@eecs.berkeley.edu, pabbeel@cs.berkeley.edu

I. INTRODUCTION

Planning and trajectory optimization can readily be used for
kinematic control of robotic manipulation. However, planning
dynamic motor skills requires a detailed physical simulation,
and some aspects of the task, such as contacts, are very
difficult to simulate with enough accuracy for dynamic manip-
ulation. Alternatively, manipulation skills can be learned from
experience, allowing them to deftly exploit the dynamics of
the real world. This is the approach taken in reinforcement
learning [12, 14, 6], where a control policy is optimized using
experience gathered directly with the robot. However, applying
reinforcement learning to realistic robotics tasks typically
requires a carefully engineered policy class with a modest
number of parameters to make the learning task tractable [3].

Recently developed guided policy search methods can be
used to learn general-purpose controllers represented by neural
networks, without task-specific engineering, by using tra-
jectory optimization to discover successful task executions
[7, 8, 9]. These methods previously required a simulator in
order to perform trajectory optimization, making them difficult
to apply to robotic motor skill learning. We present a trajectory
optimization algorithm suitable for use with guided policy
search that does not require a known dynamics model or sim-
ulator. Our experimental evaluation shows that this approach
can optimize manipulation trajectories that are extremely chal-
lenging for previous reinforcement learning methods. We also
show that, combined with guided policy search, our method
can learn complex policies for a simulated peg insertion task
in a partially observed environment.

II. TRAJECTORY OPTIMIZATION UNDER UNKNOWN
DYNAMICS

Our trajectory optimization algorithm is similar in form to
DDP or iLQG [4, 15]. First, an LQR backward pass is used
to compute a quadratic value function and a linear feedback
controller based on a linearization of the dynamics around a
nominal trajectory. The nominal trajectory is then updated by
performing rollouts with this linear controller, and the LQR
pass is repeated around this new trajectory until convergence.

Our method differs from iLQG and DDP in several ways.
Instead of using a simulator, we estimate the linearized dy-
namics from data sampled from the real system during the
rollout phase. We also construct a stochastic time-varying
linear Gaussian controller, rather than a deterministic linear
controller, which induces a probability distribution q(τ) over

trajectories. This allows us to construct stochastic policies that
change gradually on each iteration, avoiding discontinuous
jumps, and provides a way to sample multiple trajectories
during the rollout phase in order to estimate the dynamics. To
ensure that the trajectory distribution changes gradually, we
enforce a constraint that the new distribution should not differ
too much from the old one. This constraint prevents large steps
that can produce unstable trajectories when the true dynamics
are nonlinear.

To construct these time-varying linear Gaussian controllers,
we optimize a maximum entropy objective given by

L(q(τ)) =
∑
t

Eq(τ)[`(xt,ut)]−H(q(τ)), (1)

where H(q(τ)) is the differential entropy and `(xt,ut) is
the cost function. It can be shown that, under linearized
dynamics, the conditional distributions q(ut|xt) that minimize
this objective are linear Gaussians, with the mean given by
the feedback controller produced by LQR, and the covariance
given by the inverse of the quadratic component of the Q-
function (the curvature of the state-action cost-to-go function).
Details of this derivation can be found in prior work [7].

Optimizing the objective in Equation 1 yields an improved
trajectory distribution under the linearized dynamics. However,
the new trajectory can be very far from the previous one, and
the linearized dynamics may no longer be valid for it. This
can lead to divergence. We limit the change in the trajectory
distribution between iterations by imposing a constraint on the
KL-divergence between the new distribution and the old one,
resulting in the following optimization problem:

min
q(τ)

∑
t

Eq(xt,ut)[`(xt,ut)] s.t. DKL(q(τ)‖q̂(τ)) ≤ ε,

where q̂(τ) is the previous trajectory distribution. Using a dual
variable η, we can write the Lagrangian of this problem as

L(q(τ), η) =
∑
t

Eq(xt,ut)[`(xt,ut)] + η[DKL(q(τ)‖q̂(τ))− ε]

=

[∑
t

Eq(xt,ut)[`(xt,ut)−η log q̂(ut|xt)]−ηH(q(τ))

]
−ηε.

The constrained problem can then be solved by dual gradient
descent [1], where we alternate between optimizing the La-
grangian with respect to q(τ), and updating the dual variable
by incrementing it by a multiple of the current constraint
violation. Noting that the Lagrangian has a similar form to



2D insertion

samples

ta
rg

et
 d

is
ta

nc
e

100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1
3D insertion

samples

ta
rg

et
 d

is
ta

nc
e

100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1 iLQG,ItrueImodel

REPSI(100Isamp)

REPSI(20I+I500Isamp)

CEMI(100Isamp)

CEMI(20Isamp)

RWRI(100Isamp)

RWRI(20Isamp)

PILCOI(5Isamp)

oursI(20Isamp)

oursI(withIGMM,I5Isamp)

Fig. 1. Results for trajectory optimization on 2D and 3D insertion. Our approach uses fewer samples and finds better final solutions than prior methods, and
the GMM further reduces the required sample count.

itr 1 itr 2 itr 4 itr 1 itr 5 itr 10

optimized trajectories
neural network policies

slot #1 slot #2 slot #3 slot #1 slot #2 slot #3

Fig. 2. End-effector traces (in red) at various iterations of trajectory
optimization (top), dynamic grasping for moving a ball into and out of a basket
(middle), and end-effector traces for a neural network policy that searches for
the unknown hole position by sliding along the surface (bottom).

Equation 1, we can show that optimizing it with respect to q(τ)
corresponds to optimizing the trajectory distribution using the
previously described LQR algorithm with an augmented cost,
given by

˜̀(xt,ut) =
1

η
`(xt,ut)− log q̂(ut|xt).

In our approach, this optimization uses empirically estimated
time-varying linear Gaussian dynamics obtained using samples
from the previous trajectory distribution q̂(τ), which can be
obtained using rollouts on the real system. We can reduce the
number of samples required to accurately fit the dynamics at
each iteration by fitting a simple global dynamics model, and
using this global model as a prior on the linear regression.
Unlike in model-based RL, this global model need not itself
be a good forward model, since it only provides a prior for
the dynamics fit. We used a Gaussian mixture model (GMM)
fitted to samples from all time steps at the current and previous
iterations to generate this prior.

III. GENERAL POLICY SEARCH

To learn general parameterized policies, we combine our
trajectory optimization algorithm with guided policy search,
which trains a parameterized policy by alternating between
optimizing a trajectory to minimize cost and match the policy,
and optimizing the policy in supervised fashion to match the
trajectory [7, 8, 9]. Using our trajectory optimization algorithm
together with guided policy search has several advantages over
standard model-free policy search methods. Previous work

has shown that guided policy search algorithms can train
much more complex policies with many more parameters
than model-free methods, including complex locomotion con-
trollers represented by large neural networks [7, 8, 9]. Further-
more, because our trajectory optimization algorithm exploits
the structure of the conditional linear Gaussian controller to
simplify the policy search task, it can optimize trajectories
faster and with fewer samples than general-purpose model-free
policy search algorithms, leading to an efficient policy search
method that can learn complex, high-dimensional policies.

IV. EXPERIMENTAL EVALUATION

Figure 1 presents a comparison between our algorithm
and prior methods on a challenging simulated peg insertion
task. We compare our approach to REPS, including a variant
proposed by Lioutikov et al. that fits linear dynamics and
generates 500 synthetic samples, denoted “REPS (20 + 500
samps)” [10], reward-weighted regression (RWR) [11, 5],
the cross-entropy method (CEM) [13], and the model-based
PILCO method [2]. The task resembles inserting a key into
a hole, or assembling an object with screws or nails, and is
performed either in 2D or 3D. The discontinuous dynamics in-
duced by the contact forces make this a challenging trajectory
optimization task. The graph indicates the distance between
the end of the peg and the bottom of the 0.5-unit hole. While
our method could optimize trajectories for both tasks, prior
methods did not achieve distances below 0.5, indicating that
they were unable to actually insert the peg into the hole.

In Figure 2, we show each system with end-effector traces
at different iterations of our algorithm, along with snapshots
from two dynamic grasping tasks, where the goal is to either
place an object into a basket, or remove it from the basket.
Unlike planned kinematic grasps, the motion is fluid and quick,
exploiting the inertia of the arm and object.

To evaluate general parameterized policy learning with
guided policy search, we trained neural network policies in 2D
and 3D that can insert the peg into holes at various positions.
The network was not provided the hole position as input, and
had to learn to search for it within a radius of 0.2 units in
2D and 0.1 in 3D. To learn this behavior, the neural network
policy was trained with four trajectories optimized for four
different hole positions. Once trained, it was able to generalize
to any hole position within the training radius. Some images
with end-effector traces are shown in Figure 2. Note how the
end-effector follows the wall until it finds the opening.



REFERENCES

[1] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, New York, NY, USA, 2004.

[2] M. Deisenroth and C. Rasmussen. PILCO: a model-
based and data-efficient approach to policy search. In
International Conference on Machine Learning (ICML),
2011.

[3] M. Deisenroth, G. Neumann, and J. Peters. A survey on
policy search for robotics. Foundations and Trends in
Robotics, 2(1-2):1–142, 2013.

[4] D. Jacobson and D. Mayne. Differential Dynamic Pro-
gramming. Elsevier, 1970.

[5] J. Kober and J. Peters. Learning motor primitives for
robotics. In International Conference on Robotics and
Automation (ICRA), 2009.

[6] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement
learning in robotics: A survey. International Journal of
Robotic Research, 32(11):1238–1274, 2013.

[7] S. Levine and V. Koltun. Guided policy search. In
International Conference on Machine Learning (ICML),
2013.

[8] S. Levine and V. Koltun. Variational policy search via
trajectory optimization. In Advances in Neural Informa-
tion Processing Systems (NIPS), 2013.

[9] S. Levine and V. Koltun. Learning complex neural
network policies with trajectory optimization. In Interna-
tional Conference on Machine Learning (ICML), 2014.

[10] R. Lioutikov, A. Paraschos, G. Neumann, and J. Peters.
Sample-based information-theoretic stochastic optimal
control. In International Conference on Robotics and
Automation, 2014.

[11] J. Peters and S. Schaal. Applying the episodic natu-
ral actor-critic architecture to motor primitive learning.
In European Symposium on Artificial Neural Networks
(ESANN), 2007.

[12] J. Peters and S. Schaal. Reinforcement learning of motor
skills with policy gradients. Neural Networks, 21(4):682–
697, 2008.

[13] R. Rubinstein and D. Kroese. The Cross-Entropy
Method: A Unified Approach to Combinatorial Optimiza-
tion, Monte-Carlo Simulation and Machine Learning.
Springer, 2004.

[14] E. Theodorou, J. Buchli, and S. Schaal. Reinforcement
learning of motor skills in high dimensions. In Interna-
tional Conference on Robotics and Automation (ICRA),
2010.

[15] E. Todorov and W. Li. A generalized iterative LQG
method for locally-optimal feedback control of con-
strained nonlinear stochastic systems. In American Con-
trol Conference, 2005.


	Introduction
	Trajectory Optimization under Unknown Dynamics
	General Policy Search
	Experimental Evaluation

