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Abstract—The contact-SLAM problem is a broad class of
grasping and manipulation problem and it is very important
to robotic manipulation tasks, particularly when contacts are
likely to be intermittent. Several researchers have developed
particle filters for C-SLAM problems that estimate the state
of manipulated objects, some geometric properties, and their
contacts, but the effects of various designing issues are obfuscated
by implementation details and are not discussed thoroughly. In
this paper, we study the C-SLAM problem restricted to the
contact normal direction to understand fundamental modeling
choices through analysis of real and simulated experiments. We
compare the results of both rigid body and compliant body
model with several sources of noise to give users guidance in
implementing particle filters for C-SLAM problems.

I. INTRODUCTION

The SLAM problem is central to robot autonomy. Applying
the SLAM mind-set to contact problems defines the Contact-
SLAM (C-SLAM) problem, which tracks manipulated object,
locations of contacts as they form and break, and possibly
also estimates geometric parameters of the object. In the C-
SLAM problem, estimating geometric parameters is analogous
to constructing a map in the SLAM problem, since localizing
the object relative to the hand and estimating contact locations
is strongly influenced by object geometry.

The motion of solid bodies in contact is well described by
Newton-Euler differential equations and complementarity con-
ditions [1]. This model is highly nonlinear which makes linear
filtering techniques, such as Kalman filter, not applicable. Due
to the success of particle filters in nonlinear SLAM problems
and their simplicity and flexibility, they are good candidates
to solve the C-SLAM problem [2]. In this paper, we focus on
some design aspects of particle filters for the C-SLAM.

A. Previous Work using Particle Filter in C-SLAM

Gadeyne et. al. [3] considered the object localization prob-
lem of a rectangular box using a force-controlled arm with
a look-up table, which eliminates low probability samples
from the particle filter. Hebert et. al. [4] used a stereo camera
and force/torque sensor to estimate the pose of a rectangular
box held by a Barrett Hand. Unlike our work, these works
did not incorporate object dynamics into the state transition
model. Zhang et. al. [5] did include object dynamics, but only
considered a rigid body model and one and noise model in
their filter. In this work, we compare rigid and compliant

Fig. 1: Robot arm moving into contact with an object.

contact models and several noise sources to gain insight into
their impact on filter performance.

Recently, there has been a number of applications exploring
improvement of particle filters for C-SLAM problems. Zhang
et. al. [6] developed a general solution by fitting a dynamic
Bayesian network into a Rao-Blackwellized particle filter to
speed up C-SLAM. Duff et. al. [7] incorporated a real-time
physics simulator into a particle filter to estimate the poses
of objects with dynamics and intermittent contact. Koval et.
al. [8] derived a “manifold particle filter,” which improves
particle generation for the quasistatic push-grasping. These
works make suggestions on modifying the dynamic model and
trying different noise models, however, the two perspectives
were not combined as they are in our paper.

The contribution of this paper is the comparison of different
models of object dynamics with contact and different noise
models on particle performance in C-SLAM problems. Results
from physical experiments and simulation are presented.

II. DETERMINISTIC CONTACT DYNAMICS MODELS

In this paper, we will focus on object tracking and identify-
ing the binary contact state; contact or no contact. As shown
in Fig. 1, consider a robot arm moving into contact with an
object. The dynamics of the arm and object expressed in the
workspace can be written as follows: [9]:

M̃(θ)ẍ = J̃Tλ+ D̃(θ, θ̇) (1)
0 ≤ λ ⊥ Ψ(x) ≥ 0, (2)

where θ is the vector of manipulator joint angles, λ is the
contact force and moment, M̃(θ) is the combined arm/object



inertia matrix, J̃ is the jacobian associated with the contact
constraints, and D̃(θ, θ̇) is the vector of all other forces
including joint friction, Coriolis, and centripetal forces mapped
into the workspace. The second line of equation (1) is known
as a complementarity condition. The condition and the ⊥
symbol will be explained below.

A. Rigid Body Model

Since we are primarily interested in the contact transition,
in the remainder of this paper, we use a simplified version of
the model by considering the dynamics only in the direction
of the robot’s approach toward the object (the x-direction).
Further, we assume that joint friction and the arm velocity
are small enough so that the effects of D̃ may be neglected.
Under these restrictions, we consider two widely used contact
models: a rigid body model and a compliant contact model.

Applying the approach in [10] to our problem yields the
following dynamic model for the rigid body case, which takes
the form a linear complementarity problem:

mvt+1 = uth− λt+1h+mvt (3)
xt+1 = vt+1h+ xt (4)
Ψt+1 = xwall − xt+1 (5)

0 ≤ λt+1 ⊥ Ψt+1 ≥ 0. (6)

where Ψ is the signed distance between the robot and the wall
and the ⊥ symbol connotes orthogonality. The last condition
is known as the normal complementarity condition, which is
really three conditions: λt+1 ≥ 0, Ψt+1 ≥ 0, and Ψt+1 λt+1 =
0; contact forces are compressive, no penetration is allowed,
and the contact force is nonzero if and only if the robot touches
the wall.

B. Compliant Body Model

Defining λt+1 as a function of Ψt converts the rigid body
model into one with contact compliance. In this paper, we
use a nonsmooth version of the Voigt-Kelvin contact model
defined in [11]. Letting δ = −Ψ be the depth of penetration
and K and C be the contact stiffness and damping, then the
contact model is:

δt = max{0,−Ψt} (7)

δ̇t =
1

h
[max{0,−Ψt} −max{0,−Ψt−1}] (8)

λt+1 = max{0,Kδt + Cδ̇t} (9)

Equations (7-9) replace complementarity condition equation
(6), so the dynamic model with compliance consists of equa-
tions (3,4,7,8,9).

III. PROBABILISTIC MODELS

Probabilistic models are needed in order to implement a
particle filter. We define our probabilistic models as follows:

zt+1 = F (zt, ut + εt) + ηt+1, (10)

where F is the state transition model and zt = [xt vt]
T is the

state variable. εt and ηt+1 are while Gaussian noise affecting

the actuator input and the future state estimation respectively.
We only observe the position of the block, which makes our
observation model,

ot+1 = G(zt+1) + γt+1, (11)

where G(zt+1) = xt+1 and γt+1 is a white Gaussian noise.

IV. FILTERS

In this paper, we use a SIR particle filter [2], which is
summarized in Algorithm 1 with the state transition model
in Algorithm 2, to estimate the state of the robot arm. We
then combine SIR particle filter with the two probabilistic
models from section III, which yields a noisy input particle
filter (NIPF) anda noisy state particle filter (NSPF). NSPF
can compensate some of the modeling errors by using the
noise term. However using it, can generate predictions that
violate the physical constraints of the dynamic models. To
deal with this side effect, we define projected particle filter
(PJPF) which give additional weights to particles according
to their projected distances to the complementarity plane. In
addition, we introduce force state particle filter (FSPF) to deal
with noisy F/T sensors. FSPF treats the applied force as a state
variable and F/T sensor readings as its observations. The state
transition model of the applied force used is:

ut+1 = ut + wt (12)

where wt is a white Gaussian noise.
In the subsequent experiments, we use 150 particles, which
we found achieves a good balance between computation time
and accuracy.

Algorithm 1 SIR Particle Filter

function FILTER(Zt, ut, ot+1, wt)
Z̄t+1, w̄t+1 = UPDATE STATE(Zt, ut, N ,wt)
if resample condition satisfied then

for i = 1→ N do
Draw j with probability ∝ w̄[j]

t+1

Z
[i]
t+1 = Z̄

[j]
t+1, w[i]

t+1 = 1
N

end for
else

Zt+1 = Z̄t+1, wt+1 = w̄t+1

end if
return Zt+1, wt+1

end function

Algorithm 2 SIR Particle Filter Update State

function UPDATE STATE(Zt, ut, N , wt)
for i = 1→ N do

Z̄
[i]
t+1 =DETER STATE TRANSIT(Z [i]

t , ut)
w̄

[i]
t+1 = P (ot+1|Z̄ [i]

t+1) · w[i]
t

end for
Normalize w̄t+1

return Z̄t+1, w̄t+1

end function



Fig. 2: Physical experiment.

V. EXPERIMENTS

We perform both virtual and physical experiments. The
physical experiments were done with a Barrett WAM whose
palm move into contact with a stiff wall with guarded con-
trol(see Fig. 2). In the virtual experiments, the WAM is
modeled as a rigid block moved by an external force toward
a rigid wall.

We divided the estimation task into two stages: robot track-
ing and contact prediction. During the tracking stage (prior to
contact), the dynamic models are linear, so the particle filters
were compared to each other and to Kalman filters. For the
contact prediction stage, Kalman filters could not be used, so
the particle filters were are compared only against each other.
Contact confidence (the sum of the weights of the particles
that are in contact) was used as the performance criterion.

A. Tracking Results

The dynamics for the tracking stage is linear and the
contact dynamic models do not have effect at this stage.
As can be seen from Fig. 3, all filtering methods performs
very similarly on tracking tasks in the virtual experiments.
However in the physical experiments (Fig. 4), SIR diverge
from the actual trajectory soon after tracking starts while other
filtering methods perform similarly. This is because the F/T
sensor readings from Barrett WAM have a non-zero mean
Gaussian noise. This noise diverge the estimation. As soon
as the states of all the particles are ”far away“ from the actual
trajectory, the degeneracy of the particle filter happens and
all particles except one particle die, which is also the reason
that SIR particle filter has a much smoother estimation after
its divergence. Another observation is that different ways of
adding noise do not have effect on the tracking stage. However,
the noise level needs to be picked carefully to have good
tracking results. Typically, lower noise level will favor the
state transition model and higher noise level will favor the
observation model.

B. Contact Prediction Results

Contact confidence is used to evaluate the performance of
the contact prediction. From Fig. 5 and Fig. 6, we can see
that in the virtual experiments all the filtering methods show
a boost of the contact confidence very close to the actual
contact. Then SIR particle filter with rigid body model as
well as SIR particle filter, NIPF and FSPF with compliant
body model show consistence of the contact confidence.
When the contact is about to happen, all particles have a big
magnitude velocity due to the acceleration of the external
force. Therefore, when the contact happens, most of the
particles will contact the wall, which explains the boost of the
contact confidence. After the contact, the particles are either
stopped or slowed down by the contact forces. Then the noise
will vibrate the particles around the contact boundary. The
results of this effect are different between rigid body model
and compliant body model. In rigid body model, the vibration
causes penetration and the particles are shoot away from the
boundary by the impulse generated by the penetration, which
explains the major drop of contact confidence for NSPF and
PJPF. In the compliant body model, however, the particles
are moved back to the boundary ”gently“ by the compliant
constraint. Also we observe that NIPF and FSPF performs
significantly better than NSPF and PJPF in the rigid body
model case. The reason for this is that NIPF and FSPF
do not break the physical constraints and therefore all the
particles that penetrate the wall will be pushed back to the
contact boundary, which increases the contact confidence.

For the physical experiments in Fig. 7 and Fig. 8, only FSPF
and NIPF give acceptable contact prediction (SIR particle
filter predict contact far ahead of actual contact as a result
of the divergence). Again, the reason explained in the virtual
experiment results has a big effect in the physical experiment
results. This shows that when the input force signal is very
noisy, FSPF and NIPF are the best choices among all the
filtering methods. The rigid body model and compliant body
model do not perform very differently and the compliant body
model performs slightly better. However, even though SIR
particle filter makes bad contact prediction, its behavior shows
that the compliant body model makes the contact prediction
smoother than the rigid body model. The reason is that there
is a non-zero mean Gaussian noise in the input force signal
which will cause the particles to vibrate around the contact
boundary. But the non-zero mean of the noise actually pushes
the particles to penetrate the wall and creates a buffer for
the particles, which reduces the the vibration in the contact
prediction.
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Fig. 3: Tracking results of the virtual experiments.
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Fig. 4: Tracking results of the physical experiments.
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Fig. 5: Contact prediction of the virtual experiments, rigid
body model.
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Fig. 6: Contact prediction of the virtual experiments, compliant
body model.
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Fig. 7: Contact prediction of the physical experiments, rigid
body model.
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Fig. 8: Contact prediction of the physical experiments, com-
pliant body model.
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