Deep Reinforcement Learning

Lecture 1: Introduction

John Schulman

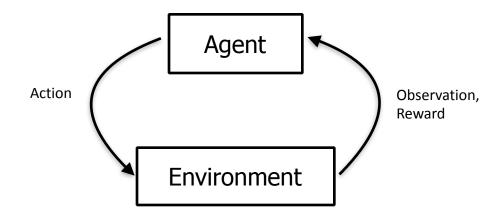
Goal of the Course

- Understand how deep reinforcement learning can be applied in various domains
- Learn about three classes of RL algorithm and how implement with neural networks
 - policy gradient methods
 - approximate dynamic programming
 - search + supervised learning
- Understand the state of deep RL as a research topic

Outline of Lecture

- What is "deep reinforcement learning"
- Where is reinforcement learning deployed?
- Where is reinforcement learning NOT deployed? (but could be...)

Sequential Decision Making



Goal: maximize expected total reward

with respect to the **policy**: a function from observation history to next action

- Robotics:
 - Actions: torque at joints
 - Observations: sensor readings
 - Rewards:
 - navigate to target location

- Robotics:
 - Actions: torque at joints
 - Observations: sensor readings
 - Rewards:
 - navigate to target location
 - complete manipulation task

- Business operations
 - Inventory management: how much to purchase of inventory, spare parts
 - Resource allocation: e.g. in call center, who to service first
 - Routing problems: e.g. for management of shipping fleet,
 which trucks/truckers to assign to which cargo

- Finance
 - Investment decisions
 - Portfolio design
 - Option/asset pricing

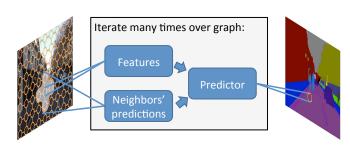
- E-commerce / media
 - What content to present to users (using click-through / visit time as reward)
 - What ads to present to users (avoiding ad fatigue)

- Medicine
 - What tests to perform, what treatments to provide

- Structured prediction: algorithm has to make a sequence of predictions, which are fed back into predictor
 - in NLP, text generation & translation, parsing [1,2]
 - multi-step pipelines in vision [3]

[1] Daumé, Hal, et al.. Search-based structured prediction (2009)

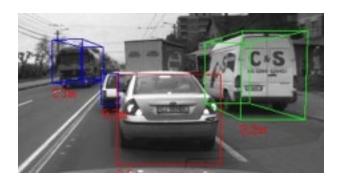
[2] Shi, T et al., Learning Where to Sample in Structured Prediction, (2015)



[3] S. Ross, Interactive Learning for Sequential Decisions and Predictions, 2013

RL vs Other Learning Problems

- Supervised learning: classification / regression
 - given observation, predict label, maximize reward function R(observation, label)



object detection

speech recognition

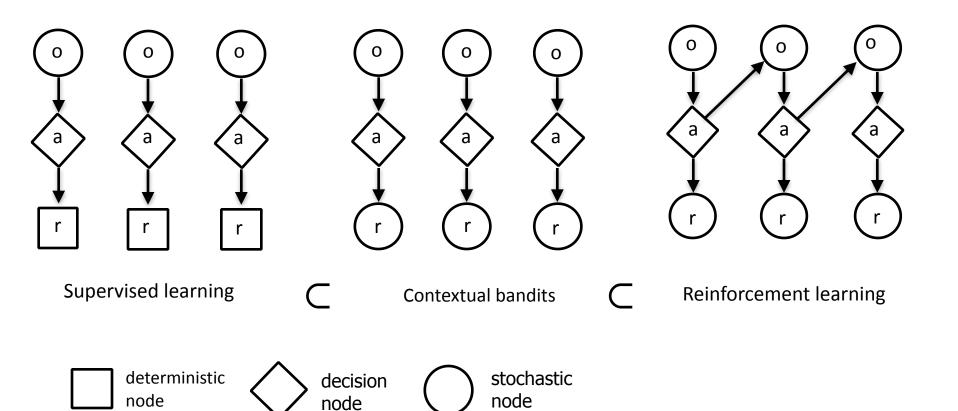
RL vs Other Learning Problems

- Contextual Bandits
 - given observation, output action, receive reward, with unknown and stochastic dependence on action and observation
 - e.g., advertising

RL vs Other Learning Problems

- Reinforcement learning
 - given observation, output action, receive reward, with <u>unknown and stochastic dependence</u> on action and observation
 - AND we perform a sequence of actions, and states depend on previous actions

RL vs. Other Learning Problems

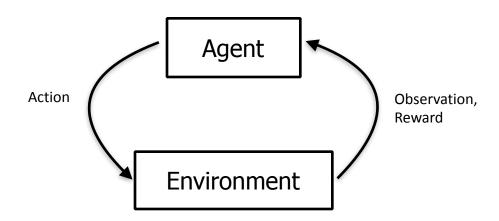


How is RL different from Supervised Learning, In Practice?

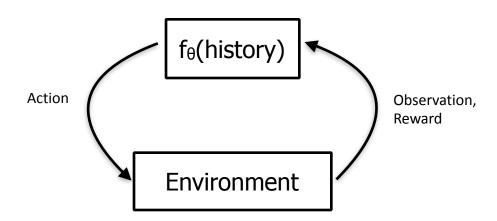
- State distribution is affected by policy
 - Need for exploration
 - Leads to instability in many algorithms

Can't use past data — online learning is not straightforward

What is "Deep RL"?



What is "Deep RL"?



Deep RL: Algorithm Design Criteria

- Algorithm learns a parameterized function f_{θ}
- Algorithm does not depend on parameterization, just that loss is differentiable wrt θ
- Optimize using gradient-based algorithms, using gradient estimators ∇_{θ} Loss

- computational complexity is linear in θ
- sample complexity is (in a sense) independent of θ

Nonlinear/Nonconvex Learning

- Supervised learning: just an unconstrained minimization of differentiable objective
 - minimize_θ Loss(X_{train}, y_{train})
 - easy to get convergence to local minimum
- Reinforcement learning: no differentiable objective to optimize!
 - actual objective E[total reward] is an expectation over random variables of unknown system
 - Approximate Dynamic Programming methods e.g. Q-learning: NOT gradient descent on fixed objective, NOT guaranteed to converge

Deep RL Allows Unified Treatment of Problem Classes

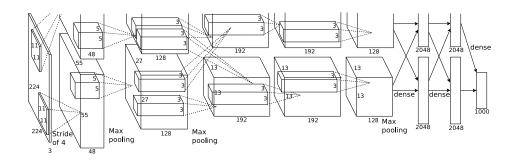
- No difference between Markov Decision Process (MDP) and Partially Observed Markov Decision Process (POMDP)
- Not much difference between discrete and continuous state/action setting
- No difference between finite-horizon, infinite horizon discounted, and average-cost setting
 - we're always just ignoring long-term dependencies

Deep RL Frontier

- Opportunity for theoretical / conceptual advances
 - How to explore state space
 - How to have a policy that involves actions with different timescales, or has subgoals (hierarchy)
 - How to combine reinforcement learning with unsupervised learning

Deep RL Frontier

- Opportunity for empirical/engineering advances
 - Pre-2012, object recognition state-of-the-art used hand-engineered features + learned linear classifiers + hand-engineered grouping mechanism
 - Now entire computer vision field uses deep neural networks for feature extraction, and moving towards end-to-end optimization of entire pipeline



Where is RL Deployed Today

- Operations research (see, e.g., [1])
 - Inventory / storage
 - Power grid: when to buy new transformers. Each costs \$5M, but failure leads to much bigger costs
 - How much of items to purchase and keep in stock
 - Resource allocation
 - Fleet management: assign cargos to truck drivers, locomotives to trains
 - Queueing problems: which customers to serve first in call center

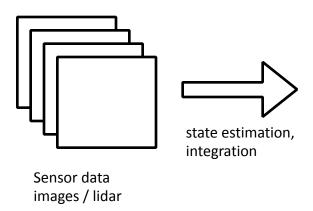
RL in Robotics

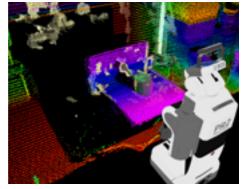
 Most industrial robotic systems perform a fixed motion repeatedly with simple or no perception.

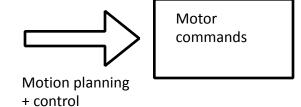
Automotive body paint line. (Courtesy of Kawasaki Robotics (USA) Inc.)

Iterative Learning Control [1] is used in some robotic systems — using model of dynamics,
 correct errors in trajectories. But these systems still use simple or no perception

Classic Paradigm for Vision-Based Robotics

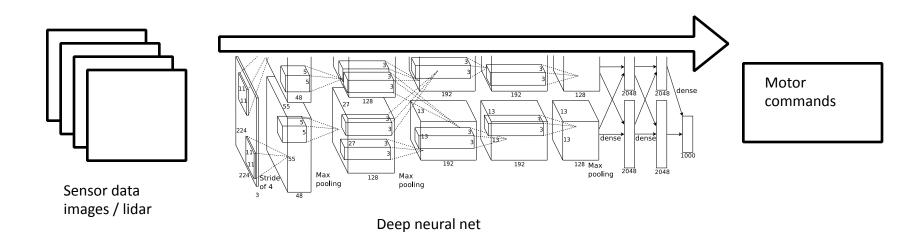






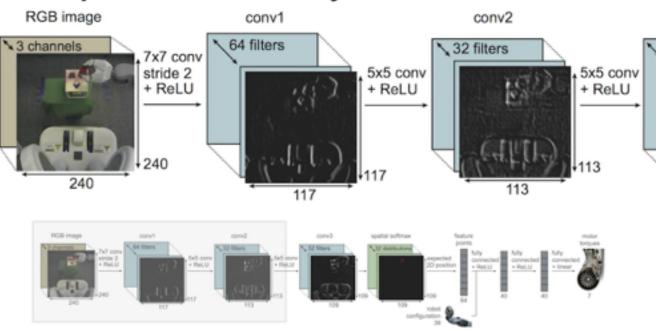
World model

Future paradigm?



Frontiers in Robotic Manipulation

Deep Visuomotor Policy Architecture



Frontiers in Robotic Locomotion

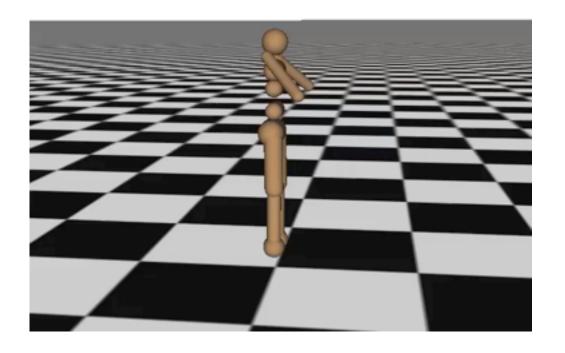
Frontiers in Robotic Locomotion

Walk Forward
Ensemble Method
Simulation and Physical

Mordatch, Igor, Kendall Lowrey, and Emanuel Todorov. *Ensemble-CIO: Full-Body Dynamic Motion Planning that Transfers to Physical Humanoids*.

Frontiers in Locomotion

Iteration 0



Schulman, Moritz, Levine, Jordan, Abbeel (2015) High-Dimensional Continuous Control Using Generalized Advantage Estimation

Atari Games

Schulman, Levine, Moritz, Jordan, Abbeel (2015) Trust Region Policy Optimization

Where Else Could Deep RL Be Applied?

Outline for Next Lectures

- Mon 8/31: MDPs
- Weds 9/2: neural nets and backprop
- Mon 9/9: policy gradients

Brushing up on RL: refs

- MDP review
 - Sutton and Barto, ch 3 and 4
- See Andrew Ng's thesis, ch 1-2 for a nice concise review of MDPs

Reinforcement Learning Textbooks

- Sutton & Barto, Reinforcement Learning: An Introduction
 - informal, prefers online algorithms
- Bertsekas, Dynamic Programming and Optimal Control
 - Vol 1. ch 6: survey of some of the most useful practical approaches for control, e.g. MPC, rollout algs
 - Vol 2 (*Approximate Dynamic Programming,* 3ed): linear and otherwise tractable methods for solving for value functions, policy iteration algs
- Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming
 - Exact methods for solving MDPs, including modified policy iteration
- Czepesvari, Algorithms for Reinforcement Learning
 - Theory on online algorithms
- Powell, Approximate Dynamic Programming
 - great on OR applications

Thanks

- Next class is Monday, August 31st
- We'll cover MDPs
- First homework will be released
 - uses python+numpy+ipython