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Course Reminders:  
March 22nd: Project group & title due 
April 17th: Milestone report due & milestone presentations 
April 26th: Beginning of project presentations
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1. Motivation & Definition 
2. Early Approaches 
3. Maximum Entropy Inverse RL 
4. Scaling inverse RL to deep cost functions
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Mnih et al. ’15

video from Montessori New Zealand

what is the reward?reinforcement learning agent

reward

In the real world, humans don’t get a score.

5



reward function is essential for RL

real-world domains: reward/cost often difficult to specify

• robotic manipulation 
• autonomous driving 
• dialog systems 
• virtual assistants 
• and more…

Kohl & Stone, ’04 Mnih et al. ’15 Silver et al. ‘16Tesauro ’95
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Behavioral Cloning: Mimic actions of expert
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Motivation

- but no reasoning about outcomes or dynamics

Can we reason about what the expert is trying to achieve?

- the expert might have different degrees of freedom

Inverse Optimal Control / Inverse Reinforcement Learning: 
infer cost/reward function from expert demonstrations

(Kalman ’64, Ng & Russell ’00)(IOC/IRL)
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Inverse Optimal Control / Inverse Reinforcement Learning: 
infer cost/reward function from demonstrations

Challenges 
underdefined problem 

difficult to evaluate a learned cost 
demonstrations may not be precisely optimal

given:  
- state & action space 
- roll-outs from π* 
- dynamics model [sometimes]

goal:  
- recover reward function 
- then use reward to get policy

Compare to DAgger: no direct access to π*
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Early IRL Approaches

All: alternate between solving MDP w.r.t. cost and updating cost 

Ng & Russell ‘00: expert actions should have higher value than 
other actions, larger gap is better 

Abbeel & Ng ’04: expert policy w.r.t. cost should match feature 
counts of expert trajectories 

Ratliff et al. ’06: max margin formulation between value of expert 
actions and other actions

How to handle ambiguity? What if expert is not perfect?
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Whiteboard

Maximum Entropy Inverse RL
(Ziebart et al. ’08)

Notation:

:   cost with parameters [linear case                                                             ]

:   dataset of demonstrations 

:   transition dynamics 
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Maximum Entropy Inverse RL
(Ziebart et al. ’08)
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Case Study: MaxEnt Deep IRL 
MaxEnt IRL with known dynamics (tabular setting), neural net cost

NIPS Deep RL workshop 2015

IROS 2016



Case Study: MaxEnt Deep IRL 
MaxEnt IRL with known dynamics (tabular setting), neural net cost
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Need to iteratively solve MDP for every weight update



Case Study: MaxEnt Deep IRL 
MaxEnt IRL with known dynamics (tabular setting), neural net cost
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demonstrations

mean height height variance cell visibility

120km of demonstration data

test-set trajectory prediction:

manually 
designed cost:

MHD: modified Hausdorff distance



Case Study: MaxEnt Deep IRL 
MaxEnt IRL with known dynamics (tabular setting), neural net cost
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Strengths 
- scales to neural net costs 
- efficient enough for real robots 

Limitations 
- still need to repeatedly solve the MDP 
- assumes known dynamics
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Whiteboard

What about unknown dynamics?



19

Goals: 
- remove need to solve MDP in the inner loop 
- be able to handle unknown dynamics  
- handle continuous state & actions spaces

Case Study: Guided Cost Learning

ICML 2016



Update cost using 
samples & demos

generate policy 
samples from π

update π w.r.t. cost
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Update cost using 
samples & demos

generate policy 
samples from π

update π w.r.t. cost 
(partially optimize)

generator
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guided cost learning algorithm

update cost in inner loop of policy optimization
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Update cost using 
samples & demos

generate policy 
samples from π

generator

Ho et al., ICML ’16, NIPS ‘16
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What about unknown dynamics?
Adaptive importance sampling



GCL Experiments

dish placement pouring almonds

Real-world Tasks

state includes goal plate pose state includes unsupervised 
visual features [Finn et al. ’16]
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action: joint torques



Update cost using 
samples & demos

generate policy 
samples from q
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Comparisons
Relative Entropy IRL 
(Boularias et al. ‘11)

Path Integral IRL 
(Kalakrishnan et al. ‘13)
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Dish placement, demos
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Dish placement, standard cost
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Dish placement, RelEnt IRL

• video of dish baseline method
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Dish placement, GCL policy

• video of dish our method - samples & reoptimizing
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Pouring, demos

• video of pouring demos
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Pouring, RelEnt IRL

• video of pouring baseline method
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Pouring, GCL policy

• video of pouring our method - samples
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Conclusion: We can recover successful policies for new 
positions. 

Is the cost function also useful for new scenarios?
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Dish placement - GCL reopt.

• video of dish our method - samples & reoptimizing
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Pouring - GCL reopt.

• video of pouring our method - reoptimization
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Note: normally the GAN discriminator is discarded
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Case Study: Generative Adversarial Imitation Learning

NIPS 2016
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Case Study: Generative Adversarial Imitation Learning

- demonstrations from TRPO-optimized policy 
- use TRPO as a policy optimizer  
- OpenAI gym tasks



Guided Cost Learning & Generative Adversarial 
Imitation Learning
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Strengths 
- can handle unknown dynamics 
- scales to neural net costs 
- efficient enough for real robots 

Limitations 
- adversarial optimization is hard 
- can’t scale to raw pixel observations of demos 
- demonstrations typically collected with kinesthetic 

teaching or teleoperation (first person)



Next Time:  
Back to forward RL (advanced policy gradients)
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IOC is under-defined
need regularization:
• encourage slowly changing cost 

• cost of demos decreases strictly monotonically in time



Regularization ablation
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