
The Nuts and Bolts of Deep RL Research

John Schulman

December 9th, 2016

Outline

Approaching New Problems

Ongoing Development and Tuning

General Tuning Strategies for RL

Policy Gradient Strategies

Q-Learning Strategies

Miscellaneous Advice

Approaching New Problems

New Algorithm? Use Small Test Problems

I Run experiments quickly

I Do hyperparameter search

I Interpret and visualize learning process: state visitation, value function, etc.

I Counterpoint: don’t overfit algorithm to contrived problem

I Useful to have medium-sized problems that you’re intimately familiar with
(Hopper, Atari Pong)

New Task? Make It Easier Until Signs of Life

I Provide good input features

I Shape reward function

POMDP Design

I Visualize random policy: does it sometimes exhibit desired behavior?

I Human control
I Atari: can you see game features in downsampled image?

I Plot time series for observations and rewards. Are they on a reasonable
scale?

I hopper.py in gym:
reward = 1.0 - 1e-3 * np.square(a).sum() + delta x / delta t

I Histogram observations and rewards

Run Your Baselines

I Don’t expect them to work with default parameters

I Recommended:
I Cross-entropy method1

I Well-tuned policy gradient method2

I Well-tuned Q-learning + SARSA method

1István Szita and András Lörincz (2006). “Learning Tetris using the noisy cross-entropy method”. In: Neural computation.

2https://github.com/openai/rllab

Run with More Samples Than Expected

I Early in tuning process, may need huge number of samples
I Don’t be deterred by published work

I Examples:
I TRPO on Atari: 100K timesteps per batch for KL= 0.01
I DQN on Atari: update freq=10K, replay buffer size=1M

Ongoing Development and Tuning

It Works! But Don’t Be Satisfied

I Explore sensitivity to each parameter
I If too sensitive, it doesn’t really work, you just got lucky

I Look for health indicators
I VF fit quality
I Policy entropy
I Update size in output space and parameter space
I Standard diagnostics for deep networks

Continually Benchmark Your Code

I If reusing code, regressions occur

I Run a battery of benchmarks occasionally

Always Use Multiple Random Seeds

Always Be Ablating

I Different tricks may substitute
I Especially whitening

I “Regularize” to favor simplicity in algorithm design space
I As usual, simplicity → generalization

Automate Your Experiments

I Don’t spend all day watching your code print out numbers

I Consider using a cloud computing platform (Microsoft Azure, Amazon EC2,
Google Compute Engine)

General Tuning Strategies for RL

Whitening / Standardizing Data

I If observations have unknown range, standardize
I Compute running estimate of mean and standard deviation
I x ′ = clip((x − µ)/σ,−10, 10)

I Rescale the rewards, but don’t shift mean, as that affects agent’s will to live

I Standardize prediction targets (e.g., value functions) the same way

Generally Important Parameters

I Discount
I Returnt = rt + γrt+1 + γ2rt+2 + . . .
I Effective time horizon: 1 + γ + γ2 + · · · = 1/(1− γ)

I I.e., γ = 0.99⇒ ignore rewards delayed by more than 100 timesteps

I Low γ works well for well-shaped reward
I In TD(λ) methods, can get away with high γ when λ < 1

I Action frequency
I Solvable with human control (if possible)
I View random exploration

General RL Diagnostics

I Look at min/max/stdev of episode returns, along with mean

I Look at episode lengths: sometimes provides additional information
I Solving problem faster, losing game slower

Policy Gradient Strategies

Entropy as Diagnostic

I Premature drop in policy entropy ⇒ no learning

I Alleviate by using entropy bonus or KL penalty

KL as Diagnostic

I Compute KL
[
πold(· | s), π(· | s)

]
I KL spike ⇒ drastic loss of performance

I No learning progress might mean steps are too large
I batchsize=100K converges to different result than batchsize=20K.

Baseline Explained Variance

I explained variance = 1−Var[empirical return−predicted value]
Var [empirical return]

Policy Initialization

I More important than in supervised learning: determines initial state
visitation

I Zero or tiny final layer, to maximize entropy

Q-Learning Strategies

I Optimize memory usage carefully: you’ll need it for replay buffer

I Learning rate schedules

I Exploration schedules

I Be patient. DQN converges slowly
I On Atari, often 10-40M frames to get policy much better than random

Thanks to Szymon Sidor for suggestions

Miscellaneous Advice

I Read older textbooks and theses, not just conference papers

I Don’t get stuck on problems—can’t solve everything at once
I Exploration problems like cart-pole swing-up
I DQN on Atari vs CartPole

Thanks!

	Approaching New Problems
	Ongoing Development and Tuning
	General Tuning Strategies for RL
	Policy Gradient Strategies
	Q-Learning Strategies
	Miscellaneous Advice

