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n  Can	RL	agents	be	brainwashed?		

n  Can	RL	agents	be	trained	to	be	sleeper	agents?	

Adversarial	Examples	in	RL	

Sandy	Huang,	Nicolas	Papernot,	Ian	Goodfellow,	Yan	Duan,	Pieter	Abbeel	



Spot	the	differences	

?	
[slide	from	Papernot]	
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Humans	can	be	fooled	too	!	

[slide	from	Papernot]	
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Adversarial	Examples	



[PMJ16] Papernot et al. The Limitations of Deep Learning in Adversarial Settings 

Jacobian-Based	IteraRve	Approach:	source-target	misclassifica0on	



Source-target	a;ack	on	MNIST	(test	set)		
97.05%	 	 	adversarial	success	rate		
4.03%	 	 	average	distorRon		

	
Source-target	a;ack	on	CIFAR-10	(test	set)		

92.78%	 	 	adversarial	success	rate		
	
If	only	interested	in	misclassificaGon	

MNIST	 	 	1.55%	average	distorRon	
CIFAR-10	 	0.39%	average	distorRon	

Jacobian-Based	IteraRve	Approach:	source-target	misclassifica0on	

[PMJ16]  Papernot et al. The Limitations of Deep Learning in Adversarial Settings 
[PMW16]  Papernot et al. Distillation as a Defense against Adversarial Perturbation of Deep Neural Networks 
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No	adversary	

Threat	Model	

Sandy	Huang,	Nicolas	Papernot,	Ian	Goodfellow,	Yan	Duan,	Pieter	Abbeel	



No	adversary	

Threat	Model	

White-box	
adversary	
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No	adversary	

Threat	Model	

White-box	
adversary	

Black-box	
adversary	

Sandy	Huang,	Nicolas	Papernot,	Ian	Goodfellow,	Yan	Duan,	Pieter	Abbeel	



Adversarial	Example	Crading	

Adversarial	example:	

OpRmal	adversarial	perturbaRon					,	given	loss	funcRon										:	

Sandy	Huang,	Nicolas	Papernot,	Ian	Goodfellow,	Yan	Duan,	Pieter	Abbeel	



Adversarial	Example	Crading	

Adversarial	example:	

OpRmal	adversarial	perturbaRon					,	given	loss	funcRon										:	

Fast	gradient	sign	method1	(FGSM)	computes	the	opRmal					for	the	
linear	approximaRon	of										,	under	the	constraint																			:	

1Goodfellow	et	al.,	ICLR	2015	
n  efficient,	reliably	fools	image	classifiers	



Original	version	of	FGSM	constrains	
Instead,	we	might	want	to	constrain	the	sparsity	or	magnitude	of		

Norm	Constraints	for	FGSM	



Examples	

FGSM	
					norm		

Sandy	Huang,	Nicolas	Papernot,	Ian	Goodfellow,	Yan	Duan,	Pieter	Abbeel	



Examples	

FGSM	
					norm		

FGSM	
							norm		



Results:	White-Box	

A3C	

TRPO	

DQN	

Chopper	Command	 Pong	 Seaquest	 Space	Invaders	

x-axis:						
y-axis:	average	return			



Results:	Black-Box	x-axis:						
y-axis:	average	return			

A3C	

TRPO	

DQN	

Pong	

algorithm	
policy	

none	

Type	of	Transfer	



Results:	Black-Box	

Sandy	Huang,	Nicolas	Papernot,	Ian	Goodfellow,	Yan	Duan,	Pieter	Abbeel	



Related	Work	
Behzadan	&	Munir	

arXiv	2017	“Vulnerability	of	Deep	RL	to	Policy	InducRon	Amacks”		

Goal:	prevent	policy	from	learning	
how	to	opRmize	true	reward		

In	addiRon,	analyzes	white-	and	black-box	adversarial	amacks	on	a	fully	trained	
policy	at	individual	Rme	steps	(not	across	an	enRre	policy	rollout)	

1uses	JSMA	to	choose						[Papernot	et	al.,	EuroS&P	2016]	

Approach:	
				1.	adversary	trains	policy	to	opRmize	
				2.	at	every	Rme	step			,	choose						to	
								lead	target	policy	to	select	same	
								acRon	as	adversary’s	policy1	



Related	Work	
“Delving	into	Adversarial	Amacks	on	Deep	Policies”	

		only	perturb	if	value	of	state												
		exceeds	threshold	(≈10%	of	Rme	steps)	

Goal	1:	inject	fewer	perturbaRons	
		retrain	on	adversarial	perturbaRons	

Goal	2:	defend	against	adversary	

Kos	&	Song,	ICLR	2017	
workshop	submission	



Related	Work	
“TacRcs	of	Adversarial	Amacks	on	Deep	RL	Agents”		 Lin	et	al.,	ICLR	2017	

workshop	submission	

		only	perturb	if	
		exceeds	threshold	(≈25%	of	Rme	steps)	

Goal	1:	inject	fewer	perturbaRons	
		1.	train	video	predicRon	model	to	
						predict											,	given						and	
		2.	use	cross-entropy	method	to	find	
							sequence	of						acRons	to	reach	
		3.	choose	best	perturbaRon	at	current	
							Rme			,	to	lead	agent	to	perform	
							first	acRon	in	sequence	
		4.	repeat	#2	and	#3	unRl								is	reached	
						(i.e.,	use	model	predicRve	control)	

Goal	2:	lead	agent	to	state	



Current	DirecRons	

Adversarial-example	amacks	on	memory-based	policies	
						dormant	amacks:	delayed	negaRve	effect	
						memory-corrupRng	amacks:	cause	policy	to	forget	its	goal	or	task	

Control	agent	to	opRmize	a	different	reward	funcRon	

Adversarial	examples	on	neural	network	policies,	in	the	real	world	
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Most	Common	Paradigm:	Learning	on	StaRc	Datasets	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

“Hi!	How	are	
you	doing	
today?”	



n  Train	deep	neural	networks	on	large,	task-specific	datasets	
using	(mostly)	supervised	learning	

n  Has	enabled	many	pracRcal	advances	in	machine	translaRon	
(Bahdanau	et	al.,	2014),	senRment	analysis	(Socher	et	al.,	
2013),	document	summarizaRon	(Durrem	et	al.,	2016),	
dialogue	(Dhingra	et	al.,	2016)	

Most	Common	Paradigm:	Learning	on	StaRc	Datasets	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Is there anything missing? 



n  Idea	that	words	in	a	language	are	Red	to	something	directly	
experienced	by	a	speaker	in	their	environment	

n  Deep	learning	on	staRc	datasets	learns	the	staGsGcal	
structure	of	language	

n  But	this	may	not	be	sufficient:	we	want	agents	to	understand	
language	so	they	can	carry	out	real	tasks	in	the	world	(or	on	
the	Internet)	

Grounding	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	



MulR-Agent	Environments	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	



MulR-agent	communicaRon	

n  CommunicaRon	outputs	
and	environment	acRons	
are	discrete	

n  Environment	state	is	
conGnuous	

n  Agents	share	parameters	

n  CommunicaRon	symbols	
are	abstract	one-hot	
vectors	



Agent	policies	
n  StochasRc	policies	
represented	by	recurrent	
modules	with	memory	

n  Trained	end-to-end	with	
backpropagaRon	through	
Rme	

n  Use	Gumbel-Sodmax	trick	
(Jang	et	al.,	2016)	for	
backpropagaRng	through	
discrete	acRons	



ComposiRonal	CommunicaRon	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	0;	1:43	
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n  Unstable	

n  Nonlinear	

n  Complicated	dynamics	

n  Air	flow	

n  Coupling	

n  Blade	dynamics	

n  Noisy	es>mates	of	posi>on,	orienta>on,	velocity,	angular	rate	
(and	perhaps	blade	and	engine	speed)	

Challenges	in	Helicopter	Control	



n  Just	a	few	examples:		

n  Bagnell	&	Schneider,	2001;		

n  LaCivita,	Papageorgiou,	Messner	&	Kanade,	2002;	

n  Ng,	Kim,	Jordan	&	Sastry	2004a	(2001);	Ng	et	al.,	2004b;	

n  Roberts,	Corke	&	Buskey,	2003;		

n  Saripalli,	Montgomery	&	Sukhatme,	2003;		

n  Shim,	Chung,	Kim	&	Sastry,	2003;		

n  Doherty	et	al.,	2004;		

n  Gavrilets,	Mar>nos,	MeWler	and	Feron,	2002.	

n  Varying	control	techniques:	inner/outer	loop	PID	with	hand	or	
automa>c	tuning,	H1,	LQR,	…	

Success	Stories:	Hover	and	Forward	Flight	



[Ng,	Coates,	Tse,	et	al,	2004]	



Alan	Szabo	–	Sunday	at	the	Lake	



One	of	our	first	aWempts	at	autonomous	flips	
[using	similar	methods	to	what	worked	for	ihover]	

Target	trajectory:	me>culously	hand-engineered	
Model:	from	(commonly	used)	frequency	sweeps	data	



n  Hover	/	sta>onary	flight	regimes:	

n  Restrict	aWen>on	to	specific	flight	regime	

n  Extensive	data	collec>on	=	collect	control	inputs,	posi>on,	orienta>on,	
velocity,	angular	rate	

n  Build	model	+	model-based	controller	

à  Successful	autonomous	flight.	

n  Aggressive	flight	maneuvers	---	addi>onal	challenges:	

n  Task	descrip7on:	What	is	the	target	trajectory?	

n  Dynamics	model:	How	to	obtain	accurate	model?	

Sta>onary	vs.	Aggressive	Flight	



n  Gavrilets,	Mar>nos,	MeWler	and	Feron,	2002	

n  3	maneuvers:	split-S,	snap	axial	roll,	stall-turn	

n  Key:	Expert	engineering	of	controllers	aler	human	pilot	demonstra>ons	

Aggressive,	Non-Sta>onary	Regimes	



Sunday	in	Open	Loop	



n  Our	work:	

n  Key:	Learn	controllers	from	human	pilot	demonstra>ons	+	RL	

n  Wide	range	of	aggressive	maneuvers	

n  Maneuvers	in	rapid	succession	

	

Aggressive,	Non-Sta>onary	Regimes	



n  Learning	a	target	trajectory	

n  Learning	a	dynamics	model	

n  Autonomous	flight	results	

Learning	Dynamic	Maneuvers	



n  Difficult	to	specify	by	hand:	

n  Required	format:	posi>on	+	orienta>on	over	>me		

n  Needs	to	sa>sfy	helicopter	dynamics	

n  Our	solu>on:	

n  Collect	demonstra>ons	of	desired	maneuvers	

n  Challenge:	extract	a	clean	target	trajectory	from	many	subop>mal/
noisy	demonstra>ons	

Target	Trajectory	

Abbeel,	Coates,	Ng,	IJRR	2010	



Expert	Demonstra>ons	



•  HMM-like	genera>ve	model	

–  Dynamics	model	used	as	HMM	transi>on	model	

–  Demos	are	observa>ons	of	hidden	trajectory	

•  Problem:	how	do	we	align	observa>ons	to	hidden	trajectory?	

Learning	a	Trajectory	

Demo	1	

Demo	2	

Hidden	

Abbeel,	Coates,	Ng,	IJRR	2010	



n  Dynamic	Time	Warping	(Needleman&Wunsch	1970,	
Sakoe&Chiba,	1978)	

n  Extended	Kalman	filter	/	smoother	

Learning	a	Trajectory	

Demo	1	

Demo	2	

Hidden	

Abbeel,	Coates,	Ng,	IJRR	2010	



Results:		Time-Aligned	Demonstra>ons	
§ 		White	helicopter	is	inferred	“intended”	trajectory.	



Results:	Loops	

Even	without	prior	knowledge,	the	inferred	trajectory	is	
much	closer	to	an	ideal	loop.	

Abbeel,	Coates,	Ng,	IJRR	2010	



n  Learning	a	target	trajectory	

n  Learning	a	dynamics	model	

n  Autonomous	flight	results	

Learning	Dynamic	Maneuvers	



Standard	Modeling	Approach	

Abbeel,	Coates,	Ng,	IJRR	2010	

3G	error!	



Key	Observa>on	

Errors	observed	in	the	“baseline”	model	are	clearly	
consistent	aler	aligning	demonstra>ons.	

Abbeel,	Coates,	Ng,	IJRR	2010	



n  If	we	fly	the	same	trajectory	repeatedly,	errors	are	consistent	
over	>me	once	we	align	the	data.	

n  There	are	many	unmodeled	variables	that	we	can’t	expect	our	model	to	
capture	accurately.	

n  Air	(!),	actuator	delays,	etc.	

n  If	we	fly	the	same	trajectory	repeatedly,	the	hidden	variables	tend	to	be	
the	same	each	>me.	

~	muscle	memory	for	human	pilots	

Key	Observa>on	

Abbeel,	Coates,	Ng,	IJRR	2010	



n  Learn	locally-weighted	model	from	aligned	demonstra>ons	

n  Since	data	is	aligned	in	>me,	we	can	weight	by	!me	to	
exploit	repeatability	of	unmodeled	variables.	

n  For	model	at	>me	t:	

n  Obtain	a	model	for	each	>me	t	into	the	maneuver	by	running	weighted	
regression	for	each	>me	t	

	

Trajectory-Specific	Local	Models	

Abbeel,	Coates,	Ng,	IJRR	2010	



n  Learning	a	target	trajectory	

n  Learning	a	dynamics	model	

n  Autonomous	flight	results	

Learning	Dynamic	Maneuvers	

Abbeel,	Coates,	Ng,	IJRR	2010	



Experimental	Setup	

Microstrain	3DM-GX1	@333Hz	
RPM	sensor	@20-30Hz	

Sonar		

Oxoard	Cameras	1280x960@20Hz	Extended	Kalman	Filter	
RHDDP	controller	

Controls		
@	20Hz	

“Posi>on”	

3-axis	
magnetometer,		
accelerometer,		
gyroscope		

(“Orienta>on”)	

Abbeel,	Coates,	Quigley,	Ng,	NIPS	2007	



1.  Collect	sweeps	to	build	a	baseline	dynamics	model	

2.  Our	expert	pilot	demonstrates	the	airshow	several	>mes.	

3.  Learn	a	target	trajectory.	

4.  Learn	a	dynamics	model.	

5.  Find	the	op>mal	control	policy	for	learned	target	and	
dynamics	model.	

6.  Autonomously	fly	the	airshow	

7.  Learn	an	improved	dynamics	model.		Go	back	to	step	4.	

!	Learn	to	fly	new	maneuvers	in	<	1hour.	

Experimental	Procedure		

Abbeel,	Coates,	Ng,	IJRR	2010	



Results:		Autonomous	Airshow	



Results:		Flight	Accuracy	



Autonomous	Autorota>on	Flights	

Abbeel,	Coates,	Hunter,	Ng,	ISER	2008	



Chaos	[“flip/roll”	parameterized	by	yaw	rate]	
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n  Faster	learning	/	Hierarchy	

n  ExploraRon	(Stadie,	Levine,	Abbeel	2015;	
Houthood,	Duan,	Chen,	Schulman	Abbeel,	
2016)	

n  Meta-learning:	RL2	(Duan,	Schulman,	Chen,	
Bartlem,	Sutskever,	Abbeel,	2016);	MAML	(Finn,	
Abbeel,	Levine,	2017)	

n  Transfer	learning	

n  Modular	networks	(Devin,	Gupta,	Darrell,	
Abbeel,	Levine,	2017)	;	Invariant	feature	spaces	
(Gupta	Devin,	Liu,	Abbeel,	Levine,	2017)	

n  Domain	randomizaRon	(Tobin,	Fong,	Schneider,	
Zaremba,	Abbeel,	2017)	

n  Safe	learning	

n  Kahn,	Villaflor,	Pong,	Abbeel,	Levine,	2017;	
Held,	McCarthy,	Zhang,	Shentu,	Abbeel,	2016	

Current	/	Future	DirecRons	
n  Unsupervised	/	Semisupervised	learning	

n  InfoGAN	(Chen,	Duan,	Houthood,	Schulman,	Sutskever,	Abbeel	2016),	
VLAE	(Chen,	Kigma,	Salimans,	Duan,	Dhariwal,	Schulman,	Sutskever,	
Abbeel,	2017)	

n  Semisupervised	RL	(Finn,	Yu,	Fu,	Abbeel,	Levine,	2017)	

n  Grounded	language	/	MulR-agent	

n  “InvenRng”	language	(Mordatch	&	Abbeel,	2017)	

n  ImitaRon	

n  First-person	from	VR	Tele-op	(McCarthy,	Zhang,	Jow,	Lee,	Goldberg,	
Abbeel,	2017)	

n  Third-person	(Stadie,	Abbeel,	Sutskever,	2017)	

n  Value	alignment	/	AI	Safety	

n  CIRL	(Hadfield-Menell,	Dragan,	Abbeel,	Russell,	2016),	Off-switch	
(Hadfield	Menell,	Dragan,	Abbeel,	Russell,	2017)	

n  CommunicaRon	(Huang,	Held,	Abbeel,	Dragan,	2017)	


