

CS294-112 SP17 Guest Lecture Pieter Abbeel

Outline

- Adversarial Attacks on Neural Network Policies
 Sandy Huang, Nicolas Papernot, Ian Goodfellow,
 Yan Duan, Pieter Abbeel
- 2) Emergence of Grounded Compositional Language in Multi-Agent Populations Igor Mordatch, Pieter Abbeel

action taken: noor

adversarial input

landmar

agent 3

landmark

action taken: down

original input

agent 1

landmarl

agent 2

С

 3) Autonomous Helicopter Flight
 Pieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng

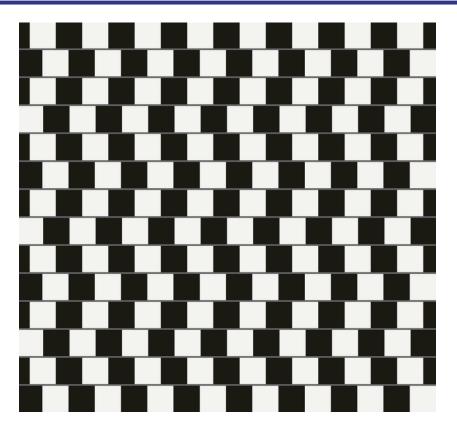
Adversarial Examples in RL

- Can RL agents be brainwashed?
- Can RL agents be trained to be sleeper agents?

Spot the differences

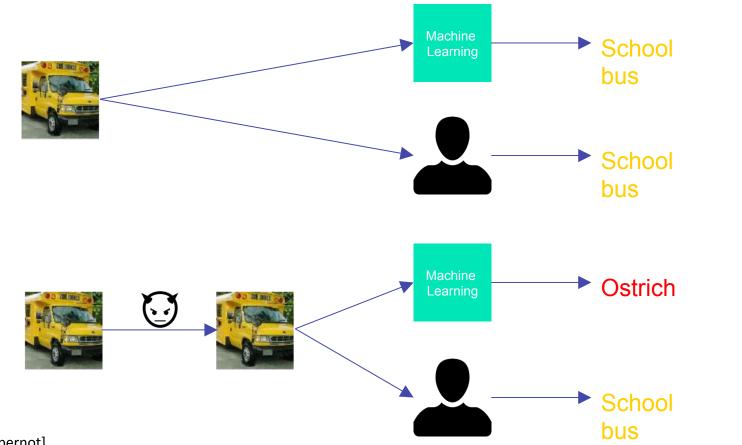
 \bigcirc

Humans can be fooled too !

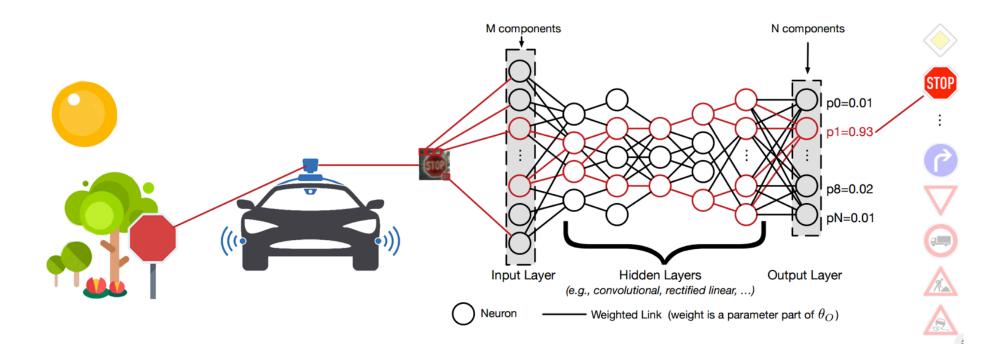


http://i.imgur.com/TTpIGvo.jpg http://www.wired.com/wp-content/uploads/2015/10/Cofeehouse-%C2%AEThomas_Hunt-1024x957.jpg

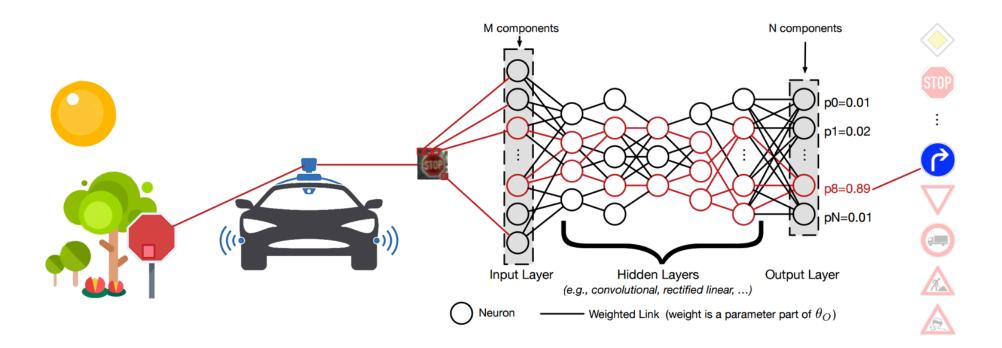
Adversarial Examples



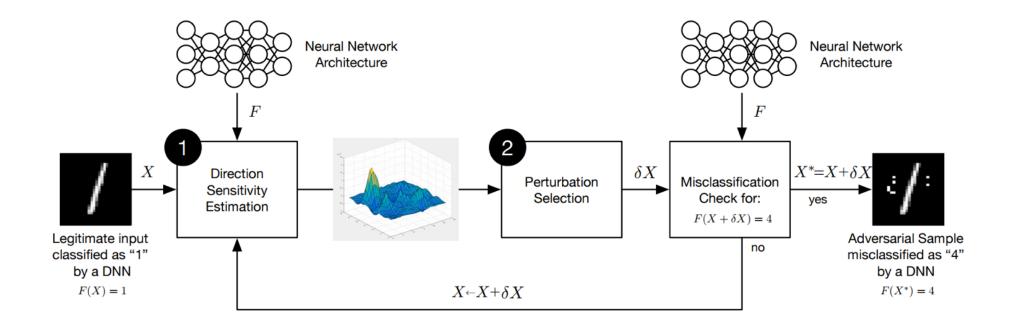
Adversarial Examples



Adversarial Examples



Jacobian-Based Iterative Approach: *source-target misclassification*



[PMJ16] Papernot et al. The Limitations of Deep Learning in Adversarial Settings

Jacobian-Based Iterative Approach: *source-target misclassification*

Source-target attack on MNIST (test set)

97.05%adversarial success rate4.03%average distortion

Source-target attack on CIFAR-10 (test set)

92.78%

adversarial success rate

If only interested in **misclassification**

MNIST1.55% average distortionCIFAR-100.39% average distortion

truck

bird airplane

automobile

e bird

Papernot et al. The Limitations of Deep Learning in Adversarial Settings Papernot et al. Distillation as a Defense against Adversarial Perturbation of Deep Neural Networks

Adversarial Examples in RL

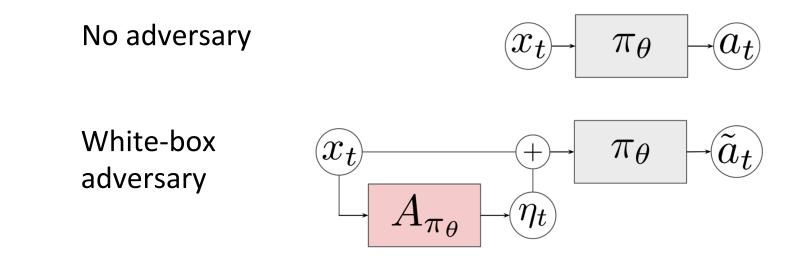
- Can RL agents be brainwashed?
- Can RL agents be trained to be sleeper agents?

Threat Model

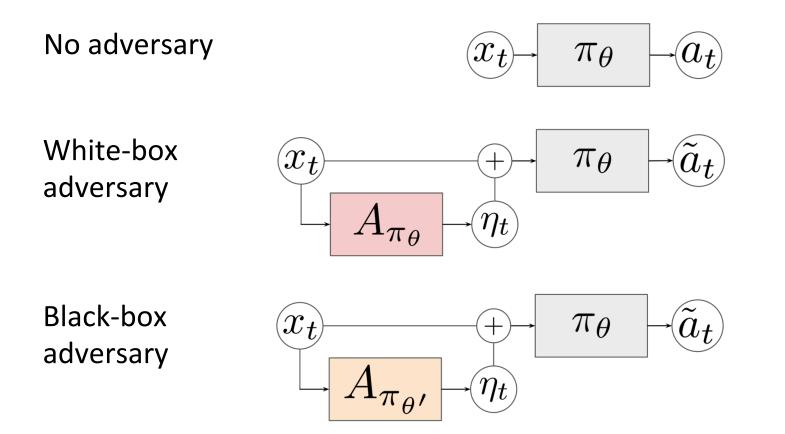
No adversary

 π_{θ} (x_t) (a_t)

Threat Model



Threat Model



Adversarial Example Crafting

Adversarial example: $\tilde{x}=x+\eta$

Optimal adversarial perturbation η , given loss function J(x):

$\operatorname*{argmax}_{\eta} J(\tilde{x})$

Adversarial Example Crafting

Adversarial example: $\tilde{x} = x + \eta$

Optimal adversarial perturbation η , given loss function J(x) :

 $\operatorname*{argmax}_{\eta} J(\tilde{x})$

Fast gradient sign method¹ (FGSM) computes the optimal η for the linear approximation of J(x), under the constraint $\|\eta\|_{\infty} \leq \epsilon$:

$$\eta = \epsilon \operatorname{sign}(\nabla_x J(x))$$

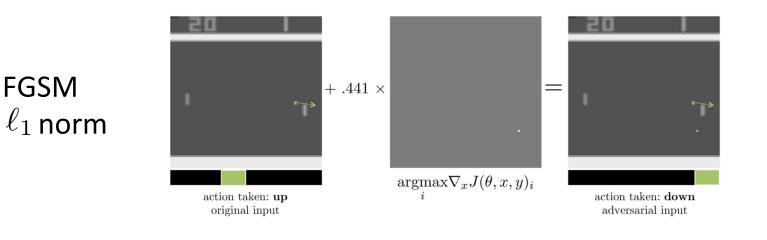
efficient, reliably fools image classifiers

¹Goodfellow et al., ICLR 2015

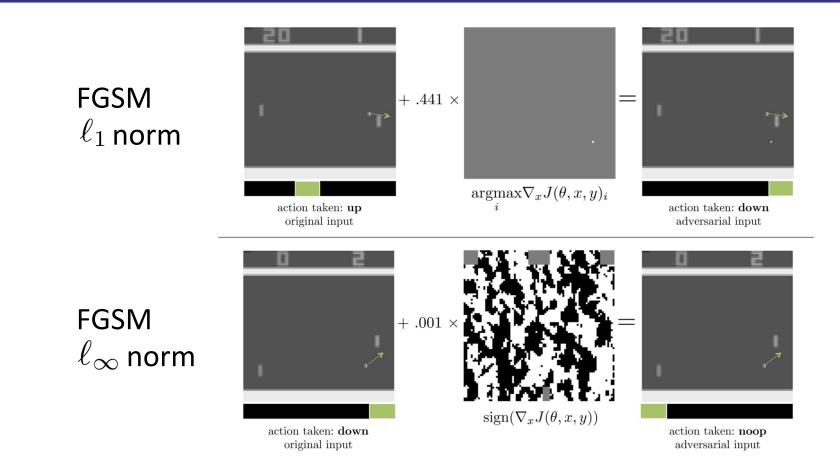
Norm Constraints for FGSM

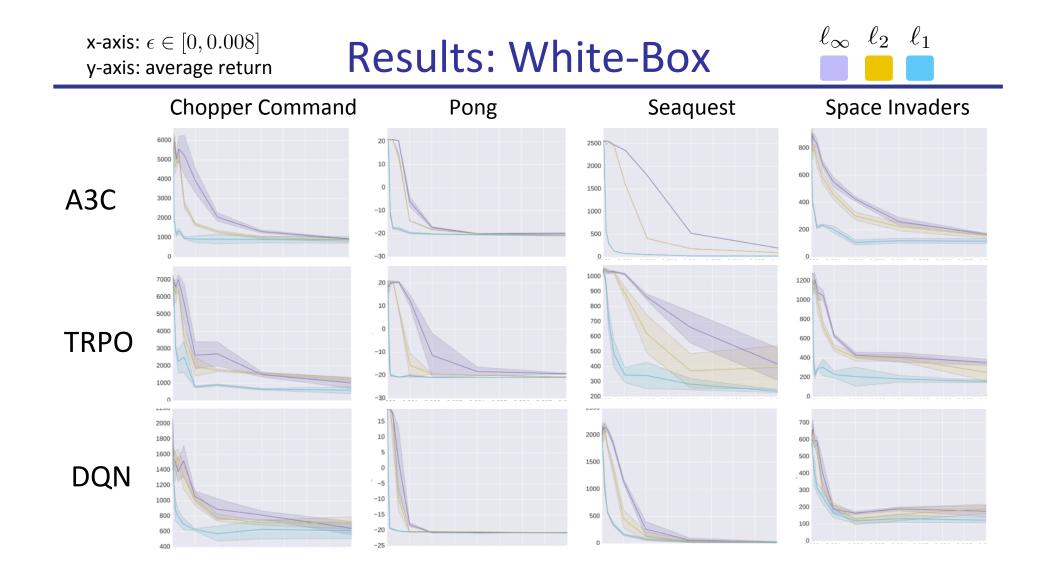
Original version of FGSM constrains $\|\eta\|_{\infty}$ Instead, we might want to constrain the sparsity or magnitude of η $\eta = \begin{cases} \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y)) & \text{for } \|\eta\|_{\infty} \leq \epsilon \\ \epsilon \sqrt{d} \ \frac{\nabla_x J(\theta, x, y)}{\|\nabla_x J(\theta, x, y)\|_2} & \text{for } \|\eta\|_2 \leq \|\epsilon \mathbf{1}_d\|_2 \\ \text{maximally perturb dimensions with budget } \epsilon d \\ & \text{for } \|\eta\|_1 \leq \|\epsilon \mathbf{1}_d\|_1 \end{cases}$

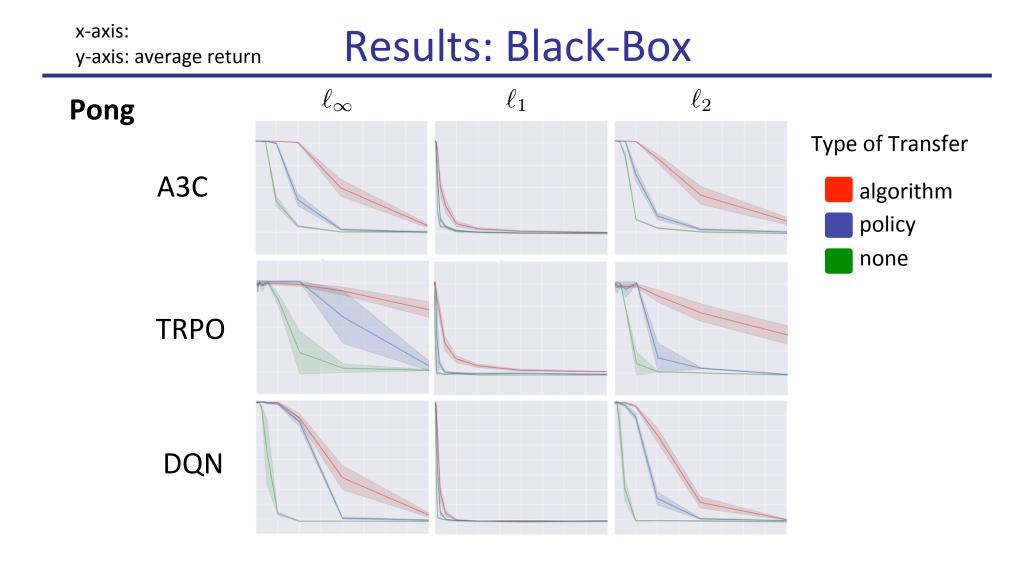
Examples



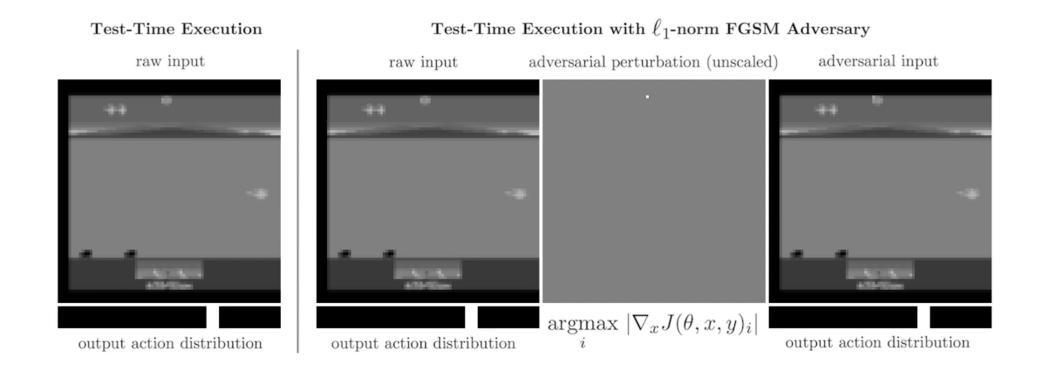
Examples







Results: Black-Box



Related Work

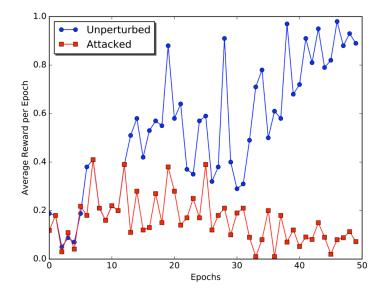
"Vulnerability of Deep RL to Policy Induction Attacks"

Goal: prevent policy from learning how to optimize true reward \boldsymbol{r}

Approach:

- 1. adversary trains policy to optimize -r
- 2. at every time step t, choose η_t to lead target policy to select same action as adversary's policy¹

Behzadan & Munir arXiv 2017



In addition, analyzes white- and black-box adversarial attacks on a fully trained policy at individual time steps (not across an entire policy rollout)

¹uses JSMA to choose η_t [Papernot et al., EuroS&P 2016]

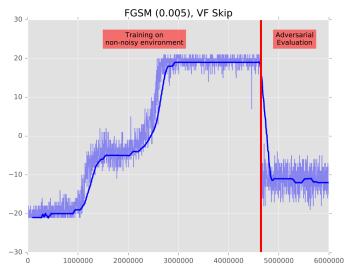
Related Work

"Delving into Adversarial Attacks on Deep Policies"

Kos & Song, ICLR 2017 workshop submission

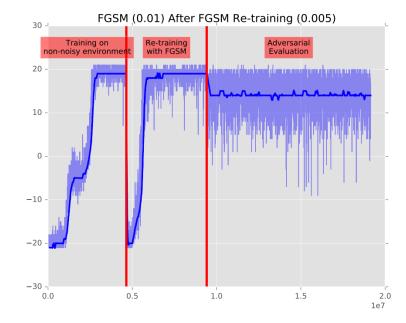
Goal 1: inject fewer perturbations

only perturb if value of state x_t exceeds threshold (~10% of time steps)



Goal 2: defend against adversary

retrain on adversarial perturbations

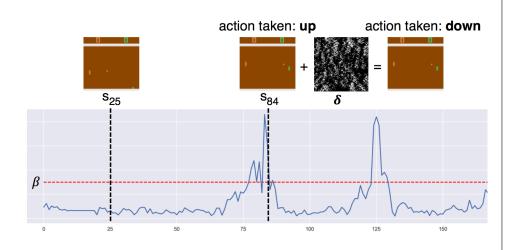


Related Work

"Tactics of Adversarial Attacks on Deep RL Agents"

Lin et al., ICLR 2017 workshop submission

Goal 1: inject fewer perturbations only perturb if $max(a_t) - min(a_t)$ exceeds threshold (\approx 25% of time steps)



Goal 2: lead agent to state x_G

- 1. train video prediction model to predict x_{t+H} , given x_t and $a_{t:t+H-1}$
- 2. use cross-entropy method to find sequence of H actions to reach x_G
- 3. choose best perturbation at current time t, to lead agent to perform first action in sequence
- 4. repeat #2 and #3 until x_G is reached (i.e., use model predictive control)

Current Directions

Adversarial-example attacks on memory-based policies dormant attacks: delayed negative effect memory-corrupting attacks: cause policy to forget its goal or task

Control agent to optimize a different reward function

Adversarial examples on neural network policies, in the real world

Outline

- Adversarial Attacks on Neural Network Policies
 Sandy Huang, Nicolas Papernot, Ian Goodfellow,
 Yan Duan, Pieter Abbeel
- 2) Emergence of Grounded Compositional Language in Multi-Agent Populations Igor Mordatch, Pieter Abbeel

action taken: noor

adversarial input

landmar

agent 3

landmark

action taken: down

original input

agent 1

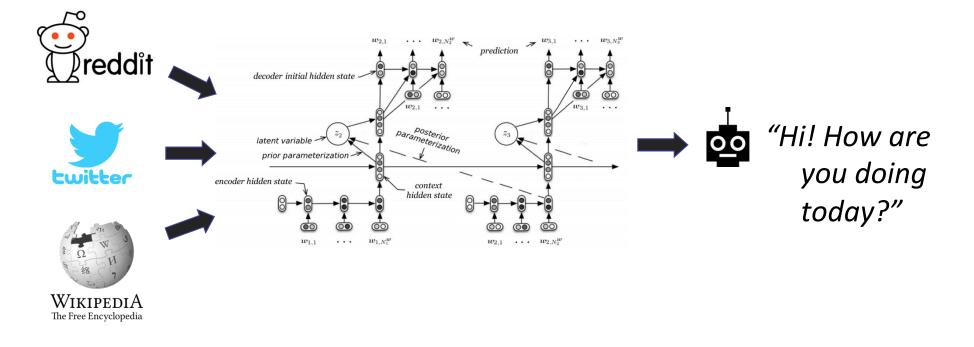
landmarl

agent 2

С

 3) Autonomous Helicopter Flight
 Pieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng

Most Common Paradigm: Learning on Static Datasets



Pieter Abbeel -- UC Berkeley / OpenAI / Gradescope

Most Common Paradigm: Learning on Static Datasets

- Train deep neural networks on large, task-specific datasets using (mostly) supervised learning
- Has enabled many practical advances in machine translation (Bahdanau et al., 2014), sentiment analysis (Socher et al., 2013), document summarization (Durrett et al., 2016), dialogue (Dhingra et al., 2016)

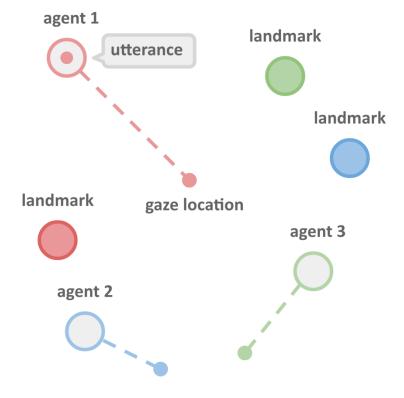
Is there anything missing?

Pieter Abbeel -- UC Berkeley / OpenAI / Gradescope

Grounding

- Idea that words in a language are tied to something directly
 experienced by a speaker in their environment
- Deep learning on static datasets learns the statistical structure of language
- <u>But this may not be sufficient</u>: we want agents to understand language so they can carry out real tasks in the world (or on the Internet)

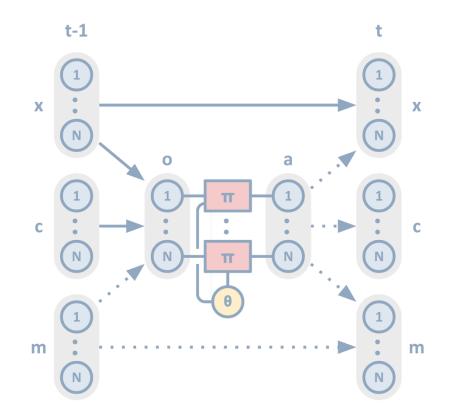
Multi-Agent Environments



Pieter Abbeel -- UC Berkeley / OpenAI / Gradescope

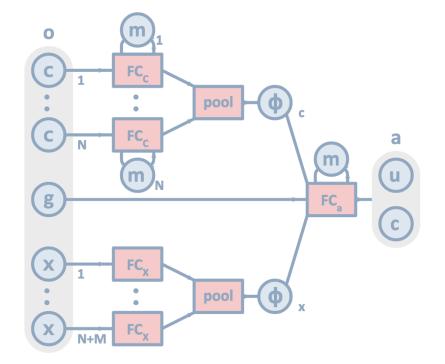
Multi-agent communication

- Communication outputs and environment actions are discrete
- Environment state is continuous
- Agents share parameters
- Communication symbols are abstract one-hot vectors



Agent policies

- Stochastic policies represented by recurrent modules with memory
- Trained end-to-end with backpropagation through time
- Use Gumbel-Softmax trick (Jang et al., 2016) for backpropagating through discrete actions



Compositional Communication

Pieter Abbeel -- UC Berkeley / OpenAI / Gradescope

Outline

- Adversarial Attacks on Neural Network Policies
 Sandy Huang, Nicolas Papernot, Ian Goodfellow,
 Yan Duan, Pieter Abbeel
- 2) Emergence of Grounded Compositional Language in Multi-Agent Populations Igor Mordatch, Pieter Abbeel

action taken: noor

adversarial input

landmar

agent 3

landmark

action taken: down

original input

agent 1

landmarl

agent 2

С

 3) Autonomous Helicopter Flight
 Pieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng

Challenges in Helicopter Control

- Unstable
- Nonlinear
- Complicated dynamics
 - Air flow
 - Coupling
 - Blade dynamics
- Noisy estimates of position, orientation, velocity, angular rate (and perhaps blade and engine speed)

Success Stories: Hover and Forward Flight

Just a few examples:

- Bagnell & Schneider, 2001;
- LaCivita, Papageorgiou, Messner & Kanade, 2002;
- Ng, Kim, Jordan & Sastry 2004a (2001); Ng et al., 2004b;
- Roberts, Corke & Buskey, 2003;
- Saripalli, Montgomery & Sukhatme, 2003;
- Shim, Chung, Kim & Sastry, 2003;
- Doherty et al., 2004;
- Gavrilets, Martinos, Mettler and Feron, 2002.
- Varying control techniques: inner/outer loop PID with hand or automatic tuning, H1, LQR, ...

Alan Szabo – Sunday at the Lake

One of our first attempts at autonomous flips [using similar methods to what worked for ihover]

Target trajectory: meticulously hand-engineered Model: from (commonly used) frequency sweeps data

Stationary vs. Aggressive Flight

- Hover / stationary flight regimes:
 - Restrict attention to specific flight regime
 - Extensive data collection = collect control inputs, position, orientation, velocity, angular rate
 - Build model + model-based controller
- → Successful autonomous flight.
- Aggressive flight maneuvers --- additional challenges:
 - **Task description**: What is the target trajectory?
 - **Dynamics model**: How to obtain accurate model?

Aggressive, Non-Stationary Regimes

• Gavrilets, Martinos, Mettler and Feron, 2002

- 3 maneuvers: split-S, snap axial roll, stall-turn
- Key: Expert engineering of controllers after human pilot demonstrations

Sunday in Open Loop

Aggressive, Non-Stationary Regimes

• Our work:

- Key: Learn controllers from human pilot demonstrations + RL
- Wide range of aggressive maneuvers
- Maneuvers in rapid succession

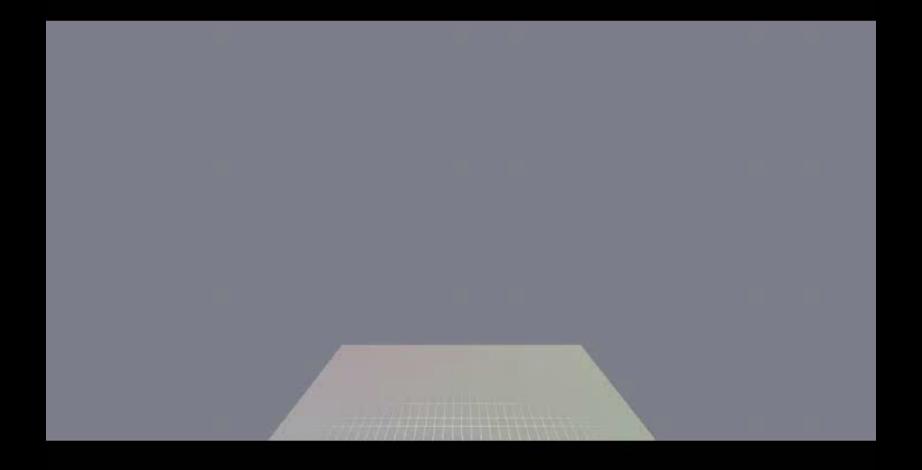
Learning Dynamic Maneuvers

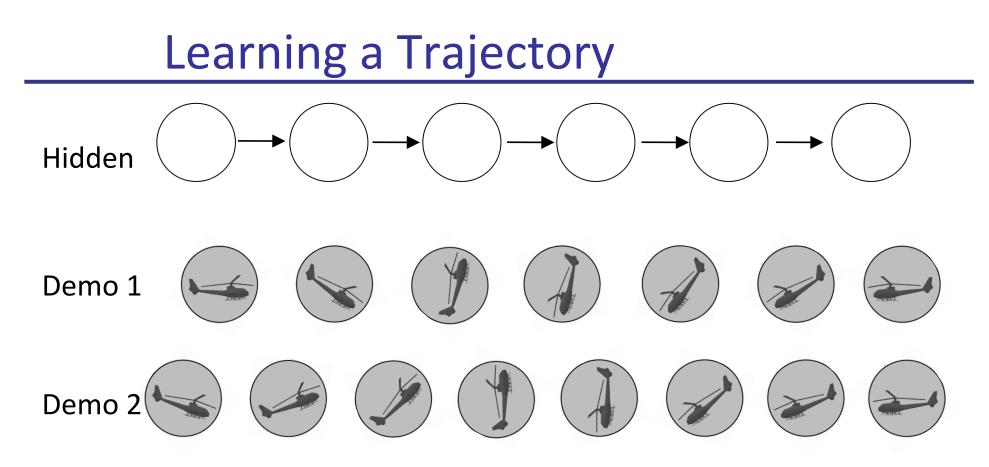
- Learning a target trajectory
- Learning a dynamics model
- Autonomous flight results

Target Trajectory

- Difficult to specify by hand:
 - Required format: position + orientation over time
 - Needs to satisfy helicopter dynamics
- Our solution:
 - Collect demonstrations of desired maneuvers
 - Challenge: extract a clean target trajectory from many suboptimal/ noisy demonstrations

Expert Demonstrations





- HMM-like generative model
 - Dynamics model used as HMM transition model
 - Demos are observations of hidden trajectory
- Problem: how do we align observations to hidden trajectory?

Learning a Trajectory

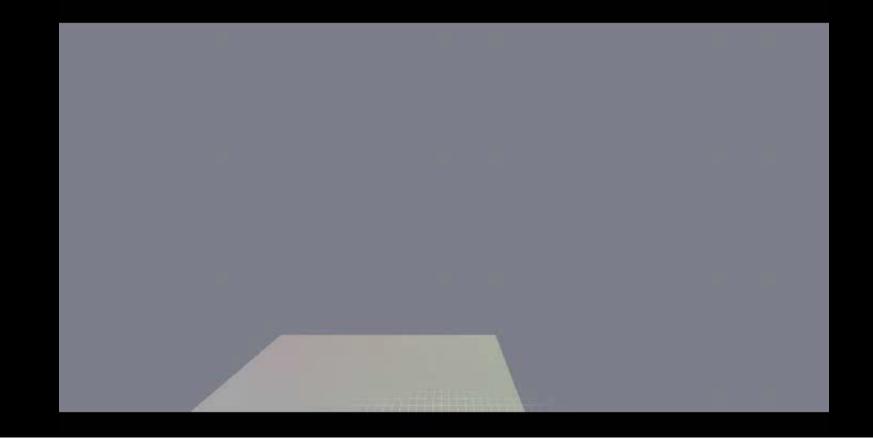


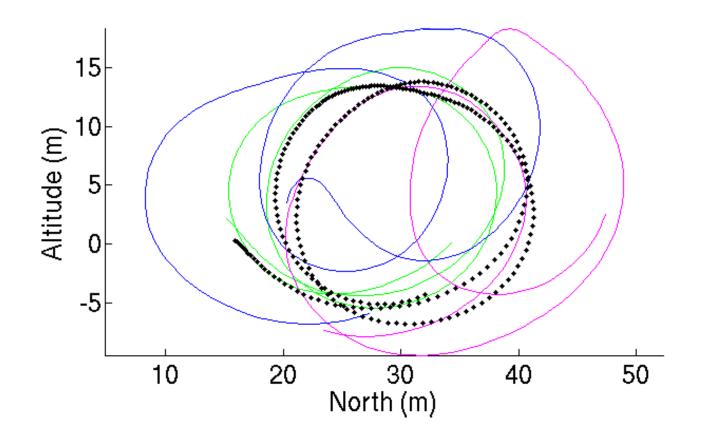
 Dynamic Time Warping (Needleman&Wunsch 1970 Sakoe&Chiba, 1978)

Extended Kalman filter / smoother

Results: Time-Aligned Demonstrations

White helicopter is inferred "intended" trajectory.

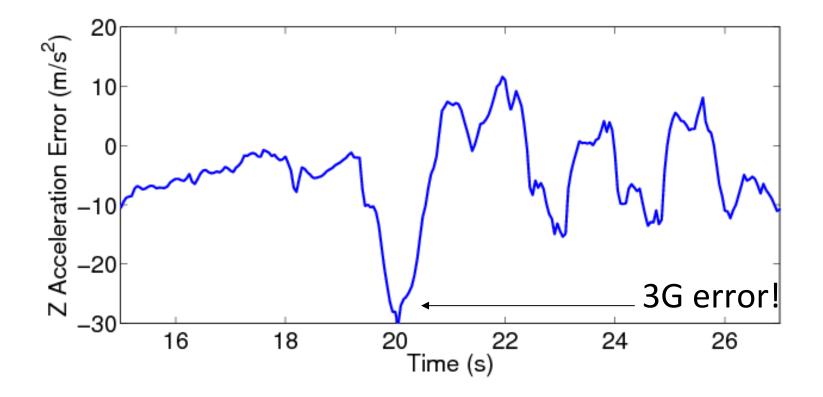




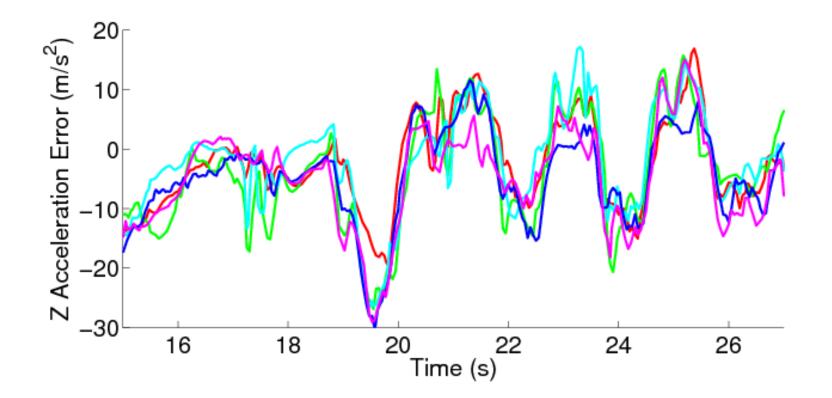
Even without prior knowledge, the inferred trajectory is much closer to an ideal loop.

Learning Dynamic Maneuvers

- Learning a target trajectory
- Learning a dynamics model
- Autonomous flight results



Key Observation



Errors observed in the "baseline" model are clearly consistent after aligning demonstrations.

- If we fly the same trajectory repeatedly, errors are consistent over time once we align the data.
 - There are many unmodeled variables that we can't expect our model to capture accurately.
 - Air (!), actuator delays, etc.
 - If we fly the same trajectory repeatedly, the hidden variables tend to be the same each time.

~ muscle memory for human pilots

Trajectory-Specific Local Models

- Learn locally-weighted model from aligned demonstrations
 - Since data is aligned in time, we can weight by time to exploit repeatability of unmodeled variables.

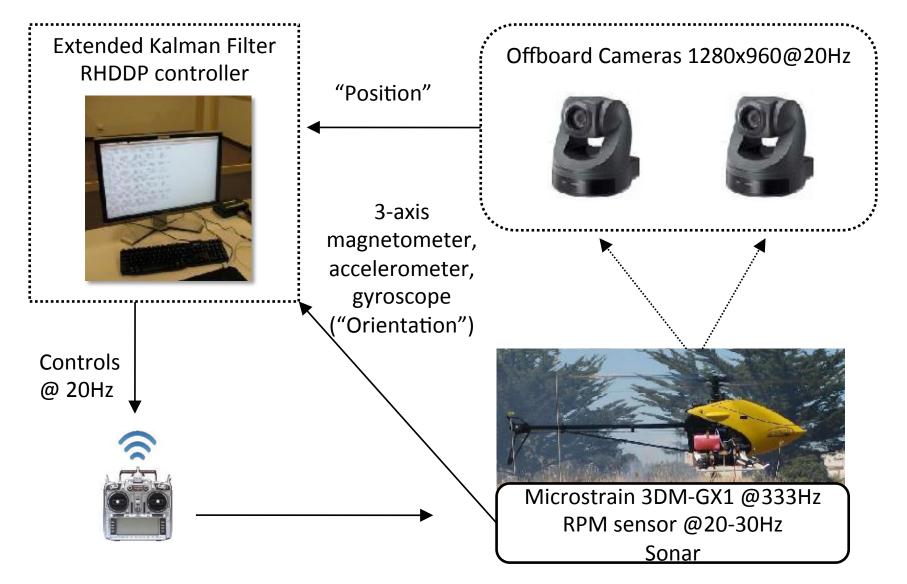
• For model at time t:
$$W(t') = e^{-rac{(t-t')^2}{\sigma^2}}$$

 Obtain a model for each time t into the maneuver by running weighted regression for each time t

Learning Dynamic Maneuvers

- Learning a target trajectory
- Learning a dynamics model
- Autonomous flight results

Experimental Setup



Abbeel, Coates, Quigley, Ng, NIPS 2007

Experimental Procedure

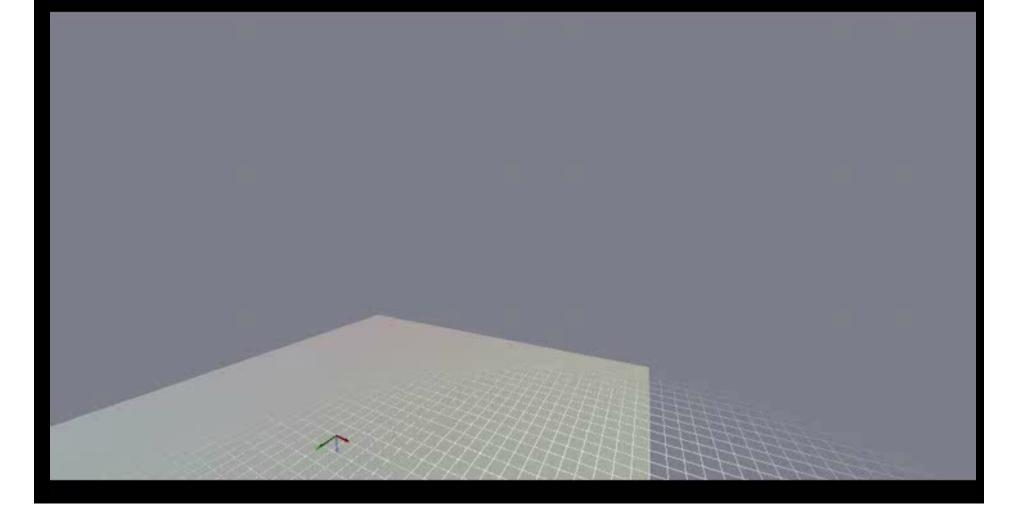
- 1. Collect sweeps to build a baseline dynamics model
- 2. Our expert pilot demonstrates the airshow several times.

- 3. Learn a target trajectory.
- 4. Learn a dynamics model.
- 5. Find the optimal control policy for learned target and dynamics model.
- 6. Autonomously fly the airshow

- 7. Learn an improved dynamics model. Go back to step 4.
- \rightarrow Learn to fly new maneuvers in < 1hour.

Results: Autonomous Airshow

Results: Flight Accuracy



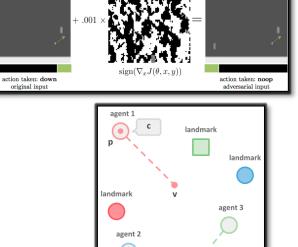
Autonomous Autorotation Flights

Chaos ["flip/roll" parameterized by yaw rate]

Summary

- 1) Adversarial Attacks on Neural Network Policies Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, Pieter Abbeel
 - 2) Emergence of Grounded Compositional Language in Multi-Agent Populations Igor Mordatch, Pieter Abbeel

 3) Autonomous Helicopter Flight
 Pieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng



Current / Future Directions

- Faster learning / Hierarchy
 - Exploration (Stadie, Levine, Abbeel 2015; Houthooft, Duan, Chen, Schulman Abbeel, 2016)
 - Meta-learning: RL2 (Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel, 2016); MAML (Finn, Abbeel, Levine, 2017)
- Transfer learning
 - Modular networks (Devin, Gupta, Darrell, Abbeel, Levine, 2017) ; Invariant feature spaces (Gupta Devin, Liu, Abbeel, Levine, 2017)
 - Domain randomization (Tobin, Fong, Schneider, Zaremba, Abbeel, 2017)
- Safe learning
 - Kahn, Villaflor, Pong, Abbeel, Levine, 2017;
 Held, McCarthy, Zhang, Shentu, Abbeel, 2016

- Unsupervised / Semisupervised learning
 - InfoGAN (Chen, Duan, Houthooft, Schulman, Sutskever, Abbeel 2016), VLAE (Chen, Kigma, Salimans, Duan, Dhariwal, Schulman, Sutskever, Abbeel, 2017)
 - Semisupervised RL (Finn, Yu, Fu, Abbeel, Levine, 2017)
- Grounded language / Multi-agent
 - "Inventing" language (Mordatch & Abbeel, 2017)
- Imitation
 - First-person from VR Tele-op (McCarthy, Zhang, Jow, Lee, Goldberg, Abbeel, 2017)
 - Third-person (Stadie, Abbeel, Sutskever, 2017)
- Value alignment / Al Safety
 - CIRL (Hadfield-Menell, Dragan, Abbeel, Russell, 2016), Off-switch (Hadfield Menell, Dragan, Abbeel, Russell, 2017)
 - Communication (Huang, Held, Abbeel, Dragan, 2017)