Supervised Learning of Behaviors: Deep Learning, Dynamical Systems, and Behavior Cloning

CS 294-112: Deep Reinforcement Learning
Week 2, Lecture 1
Sergey Levine

Today's Lecture

- 1. Definition of sequential decision problems
- 2. Imitation learning: supervised learning for decision making
 - a. Does direct imitation work?
 - b. How can we make it work more often?
- 3. Case studies of recent work in (deep) imitation learning
- 4. What is missing from imitation learning?
- Goals:
 - Understand definitions & notation
 - Understand basic imitation learning algorithms
 - Understand their strengths & weaknesses

 \mathbf{o}_t – observation

 \mathbf{x}_t – state

a bit of history...

 \mathbf{x}_t – state

 \mathbf{u}_t – action

управление

Lev Pontryagin

 \mathbf{s}_t – state

 \mathbf{a}_t – action

Richard Bellman

Imitation Learning

Images: Bojarski et al. '16, NVIDIA

Does it work?

No!

Does it work?

Yes!

Video: Bojarski et al. '16, NVIDIA

Why did that work?

Can we make it work more often?

stability

Learning from a stabilizing controller

 $p(\mathbf{x})$, ugassian distribution obtained using variant of iterative LQR test terrain 1 learned policy (more on this later)

Can we make it work more often?

Can we make it work more often?

```
can we make p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)?
idea: instead of being clever about p_{\pi_{\theta}}(\mathbf{o}_t), be clever about p_{\text{data}}(\mathbf{o}_t)!
```

DAgger: **D**ataset **A**ggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ but need labels \mathbf{u}_t !

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
 - 2. run $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
 - 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t
 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example

What's the problem?

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = {\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N}$
- 2. run $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t

 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Imitation learning: recap

- Often (but not always) insufficient by itself
 - Distribution mismatch problem
- Sometimes works well
 - Hacks (e.g. left/right images)
 - Samples from a stable trajectory distribution
 - Add more on-policy data, e.g. using DAgger

Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots

Alessandro Giusti¹, Jérôme Guzzi¹, Dan C. Cireşan¹, Fang-Lin He¹, Juan P. Rodríguez¹ Flavio Fontana², Matthias Faessler², Christian Forster² Jürgen Schmidhuber¹, Gianni Di Caro¹, Davide Scaramuzza², Luca M. Gambardella¹

Case study 2: DAgger & domain adaptation

Learning Transferable Policies for Monocular Reactive MAV Control

Shreyansh Daftry, J. Andrew Bagnell, and Martial Hebert

Robotics Institute, Carnegie Mellon University, Pittsburgh, USA {daftry,dbagnell,hebert}@ri.cmu.edu

1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

2. run $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$

3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t

4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Fig. 2. Experiments and Results for (Row-1) Transfer across physical systems from ARDrone to ArduCopter, (Row-2) Transfer across weather conditions from summer to winter and (Row-3) Transfer across environments from Univ. of Zurich to CMU.

Case study 3: Imitation with LSTMs

Learning real manipulation tasks from virtual demonstrations using LSTM

Rouhollah Rahmatizadeh¹, Pooya Abolghasemi¹, Aman Behal² and Ladislau Bölöni¹

Learning Manipulation Trajectories Using Recurrent Neural Networks

Controller	Pick and place	Push to pose	
Feedfoward-MSE	0%	0%	
LSTM-MSE	85%	0%	
Feedforward-MDN	95%	15%	
LSTM-MDN	100%	95%	

Environment	Pick and place	Push to pose
Virtual world	100%	95%
Physical world	80%	60%

Other topics in imitation learning

Structured prediction

x: where are you y: I'm at work

- See Mohammad Norouzi's lecture in April!
- Interaction & active learning
- Inverse reinforcement learning
 - Instead of copying the demonstration, figure out the goal
 - Will be covered later in this course

Imitation learning: what's the problem?

- Humans need to provide data, which is typically finite
 - Deep learning works best when data is plentiful
- Humans are not good at providing some kinds of actions

- Humans can learn autonomously; can our machines do the same?
 - Unlimited data from own experience
 - Continuous self-improvement

Next time: learning without humans

$$\min_{\mathbf{u}_1,...,\mathbf{u}_T} \sum_{t=1}^T p(\mathbf{x}_t, \mathbf{u}_t) \text{by.ttige}_t | \mathbf{u}_1 f(\mathbf{x}_t, \mathbf{u}_T)_{t-1})$$

Cost/reward functions in theory and practice

$$r(\mathbf{x}, \mathbf{u}) = \begin{cases} 1 \text{ if object at target} \\ 0 \text{ otherwise} \end{cases}$$

$$r(\mathbf{x}, \mathbf{u}) = -w_1 \|p_{\text{gripper}}(\mathbf{x}) - p_{\text{object}}(\mathbf{x})\|^2 +$$
$$-w_2 \|p_{\text{object}}(\mathbf{x}) - p_{\text{target}}(\mathbf{x})\|^2 +$$
$$-w_3 \|\mathbf{u}\|^2$$

$$r(\mathbf{x}, \mathbf{u}) = \begin{cases} 1 \text{ if walker is running} \\ 0 \text{ otherwise} \end{cases}$$

$$r(\mathbf{x}, \mathbf{u}) = w_1 v(\mathbf{x}) +$$

$$w_2 \delta(|\theta_{\text{torso}}(\mathbf{x})| < \epsilon) +$$

$$w_3 \delta(h_{\text{torso}}(\mathbf{x}) \ge h)$$

A cost function for imitation?

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
- 2. run $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

The trouble with cost & reward functions

reward

Mnih et al. '15 reinforcement learning agent

what is the reward?

Sim-to-Real Robot Learning from Pixels with Progressive Nets

Andrei A. Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, Raia Hadsell

> Google DeepMind London, UK

{andreirusu, matejvecerik, tcr, heess, razp, raia}@google.com

More on this later...

Rewards are given automatically by tracking the colored target

A note about terminology... the "R" word

a bit of history...

reinforcement learning (the **problem** statement)

$$\min \sum_{t=1}^{T} E[c(\mathbf{x}_t, \mathbf{u}_t)] \qquad \mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t)$$

$$\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t)$$

reinforcement learning (the **method**)

without using the **model**
$$\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t)$$

Lev Pontryagin

Richard Bellman

Andrew Barto

Richard Sutton