
Model-Based RL and Policy 
Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine



1. Last time: learning models of system dynamics and using optimal 
control to choose actions
• Global models and model-based RL

• Local models and model-based RL with constraints

2. What if we want a policy?
• Much quicker to evaluate actions at runtime

• Potentially better generalization

3. Can we just backpropagate into the policy?

Overview



1. Backpropagating into a policy with learned models

2. How this becomes equivalent to imitating optimal control

3. The guided policy search algorithm

4. Imitating optimal control with DAgger

5. Model-based vs. model-free RL tradeoffs

• Goals
• Understand how to train policies using optimal control

• Understand tradeoffs between various methods

Today’s Lecture



So how can we train policies?

• So far we saw how we can…
• Train global models (e.g. GPs, neural networks)

• Train local models (e.g. linear models)

• Combine global and local models (e.g. using Bayesian linear regression)

• But what if we want a policy?
• Don’t need to replan (faster)

• Potentially better generalization



Backpropagate directly into the policy?

backprop backprop
backprop

easy for deterministic policies, but also possible for stochastic policy



What’s the problem with backprop into policy?

backprop backprop
backprop

big gradients here small gradients here



What’s the problem?

backprop backprop
backprop



What’s the problem?

backprop backprop
backprop

• Similar parameter sensitivity problems as shooting methods
• But no longer have convenient second order LQR-like method, because policy 

parameters couple all the time steps, so no dynamic programming

• Similar problems to training long RNNs with BPTT
• Vanishing and exploding gradients

• Unlike LSTM, we can’t just “choose” a simple dynamics, dynamics are chosen by 
nature



What’s the problem?

• What about collocation methods?



What’s the problem?

• What about collocation methods?



Even simpler…

generic trajectory 
optimization, solve 
however you want

• How can we impose constraints on trajectory optimization?



Review: dual gradient descent



A small tweak to DGD: augmented Lagrangian

• Still converges to correct 
solution

• When far from solution, 
quadratic term tends to 
improve stability

• Closely related to alternating 
direction method of 
multipliers (ADMM)



Constraining trajectory optimization with dual 
gradient descent



Constraining trajectory optimization with dual 
gradient descent



Guided policy search discussion

• Can be interpreted as constrained trajectory optimization method

• Can be interpreted as imitation of an optimal control expert, since step 
2 is just supervised learning

• The optimal control “teacher” adapts to the learner, and avoids actions 
that the learner can’t mimic



General guided policy search scheme



Deterministic case



Learning with multiple trajectories



Case study: learning locomotion skills





Stochastic (Gaussian) GPS



Stochastic (Gaussian) GPS with local models



Robotics Example

supervised learningtrajectory-centric RL



training time test time

Input Remapping Trick



CNN Vision-Based Policy



Case study: vision-based control with GPS



Case study: vision-based control with GPS



Break



Imitating optimal control with DAgger



A problem with DAgger



Imitating MPC: PLATO algorithm

Kahn, Zhang, Levine, Abbeel ‘16



Imitating MPC: PLATO algorithm

path replanned!



Imitating MPC: PLATO algorithm



Imitating MPC: PLATO algorithm



Imitating MPC: PLATO algorithm



Imitating MPC: PLATO algorithm



Imitating MPC: PLATO algorithm



Imitating MPC: PLATO algorithm



Imitating MPC: PLATO algorithm



Imitating MPC: PLATO algorithm

avoids high cost!

input substitution trick
need state at training time
but not at test time!



Imitating MPC: PLATO algorithm



DAgger vs GPS

• DAgger does not require an adaptive expert
• Any expert will do, so long as states from learned policy can be labeled

• Assumes it is possible to match expert’s behavior up to bounded loss
• Not always possible (e.g. partially observed domains)

• GPS adapts the “expert” behavior
• Does not require bounded loss on initial expert (expert will change)



Why imitate optimal control?

• Relatively stable and easy to use
• Supervised learning works very well

• Optimal control (usually) works very well

• The combination of the two (usually) works very well

• Input remapping trick: can exploit availability of additional information at 
training time to learn policy from raw observations

• Overcomes optimization challenges of backpropagating into policy 
directly

• Usually sample-efficient and viable for real physical systems



Model-based RL algorithms summary

• Learn model and plan (without policy)
• Iteratively collect more data to overcome distribution mismatch

• Replan every time step (MPC) to mitigate small model errors

• Learn policy
• Backpropagate into policy (e.g., PILCO) – simple but potentially unstable

• Imitate optimal control in a constrained optimization framework (e.g., GPS)

• Imitate optimal control via DAgger-like process (e.g., PLATO)



Limitations of model-based RL

• Need some kind of model
• Not always available

• Sometimes harder to learn than the policy

• Learning the model takes time & data
• Sometimes expressive model classes (neural nets) are not fast

• Sometimes fast model classes (linear models) are not expressive

• Some kind of additional assumptions
• Linearizability/continuity

• Ability to reset the system (for local linear models)

• Smoothness (for GP-style global models)

• Etc.



model-based deep RL
(e.g. guided policy search)

model-based “shallow” RL
(e.g. PILCO)

replay buffer value estimation methods
(Q-learning, DDPG, NAF, etc.)

policy gradient methods
(e.g. TRPO)

fully online methods
(e.g. A3C)

gradient-free methods
(e.g. NES, CMA, etc.)

100,000,000 steps
(100,000 episodes)
(~ 15 days real time)

Wang et al. ‘17

TRPO+GAE (Schulman et al. ‘16)

half-cheetah (slightly different version)

10,000,000 steps
(10,000 episodes)
(~ 1.5 days real time)half-cheetah

Gu et al. ‘16

1,000,000 steps
(1,000 episodes)
(~ 3 hours real time)

Chebotar et al. ’17 (note log scale)

10x gap

about 20 minutes of 
experience on a real 
robot

10x

10x

10x

10x

10x



Which RL algorithm to use?

are you learning 
in a simulator?

value-based 
methods (e.g. 

Q-learning)

Policy gradient & 
actor-critic 

(TRPO, PPO, A3C)

is simulation cost 
negligible compared 

to training cost?

BUT: if you have a 
simulator, you can 
compute gradients 

through it – do you need 
model-free RL? 

how patient 
are you?

model-based 
RL (GPS, etc.)


