
Advanced Imitation Learning
Challenges and Open Problems

CS 294-112: Deep Reinforcement Learning

Sergey Levine



training
data

supervised
learning

Imitation Learning



Reinforcement Learning



Imitation vs. Reinforcement Learning

imitation learning reinforcement learning

• Requires demonstrations

• Must address distributional shift

• Simple, stable supervised learning

• Only as good as the demo

• Requires reward function

• Must address exploration

• Potentially non-convergent RL

• Can become arbitrarily good

Can we get the best of both?

e.g., what if we have demonstrations and rewards?



Addressing distributional shift with RL?

Update reward using

samples & demos

generate policy 

samples from π

policy π reward r

policy π

generator



Addressing distributional shift with RL?

IRL already addresses distributional shift via RL

this part is regular “forward” RL

But it doesn’t use a known reward function!



Simplest combination: pretrain & finetune

• Demonstrations can overcome exploration: show us how to do the task

• Reinforcement learning can improve beyond performance of the demonstrator

• Idea: initialize with imitation learning, then finetune with reinforcement learning!



Simplest combination: pretrain & finetune

Muelling et al. ‘13



Simplest combination: pretrain & finetune

Pretrain & finetune

vs. DAgger



What’s the problem?

Pretrain & finetune

can be very bad (due to distribution shift)

first batch of (very) bad data can
destroy initialization

Can we avoid forgetting the demonstrations?



Off-policy reinforcement learning

• Off-policy RL can use any data

• If we let it use demonstrations as off-policy samples, can that mitigate the 
exploration challenges?
• Since demonstrations are provided as data in every iteration, they are never forgotten

• But the policy can still become better than the demos, since it is not forced to mimic them

off-policy policy gradient (with importance sampling)

off-policy Q-learning



Policy gradient with demonstrations

includes demonstrations and experience

Why is this a good idea? Don’t we want on-policy 
samples?

optimal importance sampling



Policy gradient with demonstrations

How do we construct the sampling distribution?

this works best with self-normalized importance sampling

self-normalized IS

standard IS



Example: importance sampling with demos

Levine, Koltun ’13. “Guided policy search”



Q-learning with demonstrations

• Q-learning is already off-policy, no need to bother with 
importance weights!

• Simple solution: drop demonstrations into the replay buffer



Q-learning with demonstrations

Vecerik et al., ‘17, “Leveraging Demonstrations for Deep Reinforcement Learning…”



What’s the problem?

Importance sampling: recipe for getting stuck

Q-learning: just good data is not enough



So far…
• Pure imitation learning

• Easy and stable supervised learning

• Distributional shift

• No chance to get better than the demonstrations

• Pure reinforcement learning
• Unbiased reinforcement learning, can get arbitrarily good

• Challenging exploration and optimization problem

• Initialize & finetune
• Almost the best of both worlds

• …but can forget demo initialization due to distributional shift

• Pure reinforcement learning, with demos as off-policy data
• Unbiased reinforcement learning, can get arbitrarily good

• Demonstrations don’t always help

• Can we strike a compromise? A little bit of supervised, a little bit of RL?



Imitation as an auxiliary loss function

(or some variant of this)

(or some variant of this)

need to be careful in choosing this weight



Example: hybrid policy gradient

increase demo likelihood

standard policy gradient

Rajeswaran et al., ‘17, “Learning Complex Dexterous Manipulation…”



Example: hybrid Q-learning

Hester et al., ‘17, “Learning from Demonstrations…”

Q-learning loss

n-step Q-learning loss

regularization loss

because why not…



What’s the problem?

• Need to tune the weight

• The design of the objective, esp. for imitation, takes a lot of care

• Algorithm becomes problem-dependent



• Pure imitation learning
• Easy and stable supervised learning

• Distributional shift

• No chance to get better than the demonstrations

• Pure reinforcement learning
• Unbiased reinforcement learning, can get arbitrarily good

• Challenging exploration and optimization problem

• Initialize & finetune
• Almost the best of both worlds

• …but can forget demo initialization due to distributional shift

• Pure reinforcement learning, with demos as off-policy data
• Unbiased reinforcement learning, can get arbitrarily good

• Demonstrations don’t always help

• Hybrid objective, imitation as an “auxiliary loss”
• Like initialization & finetuning, almost the best of both worlds

• No forgetting

• But no longer pure RL, may be biased, may require lots of tuning



Break



Challenges in Deep Reinforcement Learning



Deep Q-Networks
Mnih et al.
2013

Guided policy search
Levine et al.
2013

RL on raw visual input
Lange et al.
2009

Deep deterministic policy gradients
Lillicrap et al.
2015

Trust region policy optimization
Schulman et al.
2015

Some recent work on deep RL

End-to-end visuomotor policies
Levine*, Finn* et al.
2015

Supersizing self-supervision
Pinto & Gupta
2016

stability efficiency scale

AlphaGo
Silver et al.
2016



Stability and hyperparameter tuning

• Devising stable RL algorithms is very hard

• Q-learning/value function estimation
• Fitted Q/fitted value methods with deep network function 

estimators are typically not contractions, hence no guarantee 
of convergence

• Lots of parameters for stability: target network delay, replay 
buffer size, clipping, sensitivity to learning rates, etc.

• Policy gradient/likelihood ratio/REINFORCE
• Very high variance gradient estimator
• Lots of samples, complex baselines, etc.
• Parameters: batch size, learning rate, design of baseline

• Model-based RL algorithms
• Model class and fitting method
• Optimizing policy w.r.t. model non-trivial due to 

backpropagation through time



Tuning hyperparameters

• Get used to running multiple hyperparameters
• learning_rate = [0.1, 0.5, 1.0, 5.0, 20.0]

• Grid layout for hyperparameter sweeps OK when 
sweeping 1 or 2 parameters

• Random layout generally more optimal, the only viable 
option in higher dimensions

• Don’t forget the random seed!
• RL is self-reinforcing, very likely to get local optima

• Don’t assume it works well until you test a few random seeds

• Remember that random seed is not a hyperparameter!



The challenge with hyperparameters

• Can’t run hyperparameter sweeps in the real 
world
• How representative is your simulator? Usually the 

answer is “not very”

• Actual sample complexity = time to run 
algorithm x number of runs to sweep
• In effect stochastic search + gradient-based 

optimization

• Can we develop more stable algorithms that 
are less sensitive to hyperparameters?



What can we do?

• Algorithms with favorable improvement and convergence properties
• Trust region policy optimization [Schulman et al. ‘16]

• Safe reinforcement learning, High-confidence policy improvement [Thomas ‘15]

• Algorithms that adaptively adjust parameters
• Q-Prop [Gu et al. ‘17]: adaptively adjust strength of control variate/baseline

• More research needed here!

• Not great for beating benchmarks, but absolutely essential to make RL a 
viable tool for real-world problems



Sample Complexity



model-based deep RL
(e.g. guided policy search)

model-based “shallow” RL
(e.g. PILCO)

replay buffer value estimation methods
(Q-learning, DDPG, NAF, etc.)

policy gradient methods
(e.g. TRPO)

fully online methods
(e.g. A3C)

gradient-free methods
(e.g. NES, CMA, etc.)

100,000,000 steps
(100,000 episodes)
(~ 15 days real time)

Wang et al. ‘17

TRPO+GAE (Schulman et al. ‘16)

half-cheetah (slightly different version)

10,000,000 steps
(10,000 episodes)
(~ 1.5 days real time)half-cheetah

Gu et al. ‘16

1,000,000 steps
(1,000 episodes)
(~ 3 hours real time)

Chebotar et al. ’17 (note log scale)

10x gap

about 20 minutes of 
experience on a real 
robot

10x

10x

10x

10x

10x



What about more realistic tasks?

• Big cost paid for dimensionality

• Big cost paid for using raw images

• Big cost in the presence of real-world diversity 
(many tasks, many situations, etc.)



The challenge with sample complexity

• Need to wait for a long time for your 
homework to finish running

• Real-world learning becomes difficult or 
impractical

• Precludes the use of expensive, high-fidelity 
simulators

• Limits applicability to real-world problems



What can we do?

• Better model-based RL algorithms

• Design faster algorithms
• Q-Prop (Gu et al. ‘17): policy gradient algorithm that is as fast as value estimation

• Learning to play in a day (He et al. ‘17): Q-learning algorithm that is much faster 
on Atari than DQN

• Reuse prior knowledge to accelerate reinforcement learning
• RL2: Fast reinforcement learning via slow reinforcement learning (Duan et al. ‘17)

• Learning to reinforcement learning (Wang et al. ‘17)

• Model-agnostic meta-learning (Finn et al. ‘17)



Scaling up deep RL & generalization

• Large-scale

• Emphasizes diversity

• Evaluated on generalization

• Small-scale

• Emphasizes mastery

• Evaluated on performance

• Where is the generalization?



Generalizing from massive experience

Pinto & Gupta, 2015

Levine et al. 2016



Generalizing from multi-task learning

• Train on multiple tasks, then try to generalize or finetune
• Policy distillation (Rusu et al. ‘15)

• Actor-mimic (Parisotto et al. ‘15)

• Model-agnostic meta-learning (Finn et al. ‘17)

• many others…

• Unsupervised or weakly supervised learning of diverse behaviors
• Stochastic neural networks (Florensa et al. ‘17)

• Reinforcement learning with deep energy-based policies (Haarnoja et al. ‘17)

• many others…



Generalizing from prior knowledge & 
experience

• Can we get better generalization by leveraging off-policy data?

• Model-based methods: perhaps a good avenue, since the model (e.g. 
physics) is more task-agnostic

• What does it mean to have a “feature” of decision making, in the same 
sense that we have “features” in computer vision?
• Options framework (mini behaviors)

• Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement 
learning (Sutton et al. ’99)

• The option-critic architecture (Bacon et al. ‘16)

• Muscle synergies & low-dimensional spaces
• Unsupervised learning of sensorimotor primitives (Todorov & Gahramani ’03)



Reward specification

• If you want to learn from many 
different tasks, you need to get those 
tasks somewhere!

• Learn objectives/rewards from 
demonstration (inverse 
reinforcement learning)

• Generate objectives automatically?



Learning as the basis of intelligence

• Reinforcement learning = can reason about 
decision making

• Deep models = allows RL algorithms to 
learn and represent complex input-output 
mappings

Deep models are what allow 
reinforcement learning algorithms to 
solve complex problems end to end!



What can deep learning & RL do well now?

• Acquire high degree of proficiency in 
domains governed by simple, known 
rules

• Learn simple skills with raw sensory 
inputs, given enough experience

• Learn from imitating enough human-
provided expert behavior



What has proven challenging so far?

• Humans can learn incredibly quickly
• Deep RL methods are usually slow

• Humans can reuse past knowledge
• Transfer learning in deep RL is an open problem

• Not clear what the reward function should be

• Not clear what the role of prediction should be



What is missing?



Where does the supervision come from?

• Yann LeCun’s cake
• Unsupervised or self-supervised learning

• Model learning (predict the future)

• Generative modeling of the world

• Lots to do even before you accomplish your goal!

• Imitation & understanding other agents
• We are social animals, and we have culture – for a reason!

• The giant value backup
• All it takes is one +1

• All of the above



How should we answer these questions?

• Pick the right problems!

• Pay attention to generative models, prediction

• Carefully understand the relationship between RL and other ML fields


