Advanced Imitation Learning
Challenges and Open Problems

CS 294-112: Deep Reinforcement Learning

Sergey Levine

Imitation Learning

training SlIJ::rrr:lilriZd} 7o (at|os)

Reinforcement Learning

AR RR

2 2R
2 8s2e9

T e
|

KA A

Imitation vs. Reinforcement Learning

imitation learning reinforcement learning
* Requires demonstrations * Requires reward function
* Must address distributional shift * Must address exploration

e Simple, stable supervised learning ¢ Potentially non-convergent RL
* Only as good as the demo * Can become arbitrarily good

Can we get the best of both?

e.g., what if we have demonstrations and rewards?

Addressing distributional shift with RL?

initial human
policy 1t demonstrations
generate policy 9 @ forsersnn O
: samples from Tt %) S— _
| generator | Q 2 i) — N

Update reward using

\)ﬁples & demos

policy it reward r

Addressing distributional shift with RL?

IRL already addresses distributional shift via RL

human
demonstrations
generate policy (©) sz (@ v ’@ N
samples from Tt I | o D)
g nerator @ L ﬁl.y G\J /

Update reward using
_/sa(nples & demos

policy reward r

\)
|

this part is regular “forward” RL

But it doesn’t use a known reward function!

Simplest combination: pretrain & finetune

 Demonstrations can overcome exploration: show us how to do the task
* Reinforcement learning can improve beyond performance of the demonstrator

* |dea: initialize with imitation learning, then finetune with reinforcement learning!

collected demonstration data (s;,a;)
initialize 7y as maxy Y . log mo(a;|s;)

. run 7y to collect experience

S

improve mg with any RL algorithm

Simplest combination: pretrain & finetune

Muelling et al. ‘13

Simplest combination: pretrain & finetune

Pretrain & finetune

. collected demonstration data (s;,a;)
initialize mg as maxy) . logmg(a;s;)

run g to collect experience

B~ W N

improve my with any RL algorithm

vs. DAgger

1. train my(as|os) from human data D = {o1,a;,...,0n,an}
2. run mg(a;|oy) to get dataset D = {01,...,05}

3. Ask human to label D, with actions a;

4. Aggregate: D < DU D,

What’s the problem?

Pretrain & finetune

1. collected demonstration data (s;,a;)

2. initialize mp as maxg), log mg(ay|s;)

3. run 7y to collect experience « can be very bad (due to distribution shift)
4. improve mp with any RL algorithm < first batch of (very) bad data can

destroy initialization

Can we avoid forgetting the demonstrations?

Off-policy reinforcement learning

e Off-policy RL can use any data

* |f we let it use demonstrations as off-policy samples, can that mitigate the
exploration challenges?

* Since demonstrations are provided as data in every iteration, they are never forgotten
e But the policy can still become better than the demos, since it is not forced to mimic them

off-policy policy gradient (with importance sampling)

off-policy Q-learning

Policy gradient with demonstrations

Vol (0) =)

T€D

\

includes demonstrations and experience

t=1

t'=1

Why is this a good idea? Don’t we want on-policy
samples?

best sampling distribution should have high reward!

.

at/ |Stf

T {
T\ Ay Sy
ng log mg(a|s¢) (H o(ay st

()

optimal importance sampling

say we want Fp [f(z)]
By lf (@) = % X, 258 £ ()

which q(x) gives lowest variance?

answer: ¢(z) o< p(z)|f ()]

Policy gradient with demonstrations

t

T

T\ A |Syr
ZV@logﬂg(at|st) (H gat||st) (Zr S/, Ay)]
t:1 tf t/

t'=1 t'=t

VoJ(0) = Z

T€D

How do we construct the sampling distribution?

standard IS

_ : e : : 5 .
problem 1: which distribution did the demonstrations come from? E, (x)[f(z)] ~ % Zz ggw : Flx:)

option 1: use supervised behavior cloning to approximate Tgemo ' self-normalized IS

option 2: assume Diract delta: mTgemo(7) = %5(7‘ € D) By f(x)] = (m F D ggxz)f(x’)
\ ZJ Z(w t ol

this works best with self-normalized importance sampling

problem 2: what to do if we have multiple distributions?

fusion distribution: q(z) = 57 >, ¢:(z)

Example: importance sampling with demos

T t
e atz |Stf
VQJ(Q) — E E VQ logvrg(at|st) | I E T Str at,
atr |Stf
TeD Lt=1 t'=1 t'=t
swimmer, learned policy hopper, learne dp olicy
50 ‘hldden units \ 50 hidden test terrain 1
learned policy
i
walker, I ned policy varied terrain, learned policy
50 hidde lts test terrain 1

Levine, Koltun ’"13. “Guided policy search”

Q-learning with demonstrations

* Q-learning is already off-policy, no need to bother with
importance weights!

» Simple solution: drop demonstrations into the replay buffer

full Q-learning with replay buffer:
initialize B to contain the demonstration data

1. collect dataset {(s;,a;, s}, r;)} using some policy, add it to B

2. sample a batch (sz, a;,s;,r;) from B

3. ¢ < Qb—ofzz A = (si,a:)(Qp(si, a;) — [r(si; a;) +y maxa Qu(s],aj)])

K X

Q-learning with demonstrations

(a) Peg Insertion Task. (b) Hard-drive Task.

o

(c) Clip Insertion Task (d) Cable Insertion Task.

Vecerik et al., ‘17, “Leveraging Demonstrations for Deep Reinforcement Learning...”

What’s the problem?

Importance sampling: recipe for getting stuck

:cosp

VoJ(0) =)

€D

T at |S 4 state
E Vi log my(ay|s;) H E r(sy,ay)

Q-learning: just good data is not enough

ps Q(s,a)
Q*(s,a)

So far...

e Pure imitation learning
e Easy and stable supervised learning
* Distributional shift
* No chance to get better than the demonstrations

Pure reinforcement learning
* Unbiased reinforcement learning, can get arbitrarily good
e Challenging exploration and optimization problem

Initialize & finetune
e Almost the best of both worlds
 ...but can forget demo initialization due to distributional shift

Pure reinforcement learning, with demos as off-policy data
* Unbiased reinforcement learning, can get arbitrarily good
 Demonstrations don’t always help

Can we strike a compromise? A little bit of supervised, a little bit of RL?

Imitation as an auxiliary loss function

imitation objective: Z(s,a)eDdemo log mg(als) (Or some variant of thiS)

RL objective: Er,[r(s,a)] (or some variant of this)

hybrid objective: Ex,[r(s,a)l + A) g ayep,.... logmo(als)

need to be careful in choosing this weight

Example: hybrid policy gradient

standard policy gradient

/

Jaug = Z Volnmg(als)A™ (s, a)+

(s,0)€pn Learned Policies
Z Volnmg(a®|s)w(s,a™)
(s.a*)€pp \

increase demo likelihood

Rajeswaran et al., ‘17, “Learning Complex Dexterous Manipulation...”

Example: hybrid Q-learning

J(Q) = Jpq(Q) + M Jn(Q) + A2 JE(Q) + A3 J12(Q).

Q-learning loss

n-step Q-learning loss

Loss Ablations: Montezuma Revenge
QD

No L2 regularization loss
No Supervised Loss

Mo n-step TD loss

2000

7000

6000

L
=
=
(=]

4000

NEPARSY

=

Training Episode Returns

-
R
Fary

ammprs=z

CI- 50 100 150 200

Training Iteration

Hester et al., ‘17, “Learning from Demonstrations...”

JE(Q) = max

Loss Ablations: Qbert

25000

20000

@

E

2

[}

< 15000

@

E ol ' H

a Mgt .

= ry .

2 10000 f 1 . :

— = = 5

= " WA ' -

= b v a -& u

e g * ey)

y L '
5000 £ 1 — :
T No L2 regularization loss «
¥ === o Supervised Loss :
?' === No n-step TD loss H
. ! |- | 7 _____

0 50 100 150

Training Iteration

_— regularization loss

because why not...

ac A

[Q(S: ﬂ) + E(aEa (I)] — Q(Sa a‘E)

margin-based loss on example action

8000 Related Work: Montezuma Revenge

ADET
— DOfD

- Human Experience Replay
- Replay Buffer Spiking

J000

6000

3000

Training Episede Returns
45 w
(=] (=]
(=] (=]
(=] (=]

[N
(=]
=
=

Training Iteration

Training Episode Returns

Related Work: Qbert

25000

20000
15000
10000

5000 K - Abé_‘r'-__"._.'-,;- oty Bt
3 — DOfD

- Human Experience Replay
Replay Buffer Spiking .

100 200
Training lteration

0 50 150

What’s the problem?

hybrid objective: Ex,[r(s,a)] + A) g ayep,.... l0gmo(als)

* Need to tune the weight
* The design of the objective, esp. for imitation, takes a lot of care

* Algorithm becomes problem-dependent

Pure imitation learning
e Easy and stable supervised learning
 Distributional shift
* No chance to get better than the demonstrations

Pure reinforcement learning
e Unbiased reinforcement learning, can get arbitrarily good
e Challenging exploration and optimization problem

Initialize & finetune
* Almost the best of both worlds
 ...but can forget demo initialization due to distributional shift

Pure reinforcement learning, with demos as off-policy data
* Unbiased reinforcement learning, can get arbitrarily good
 Demonstrations don’t always help

Hybrid objective, imitation as an “auxiliary loss”
* Like initialization & finetuning, almost the best of both worlds
* No forgetting
e But no longer pure RL, may be biased, may require lots of tuning

Break

Challenges in Deep Reinforcement Learning

a mpe i |8 AlphaGo

-a ms i\ i\B .
B-oesi-0: io: & Silver et al.

8 @\ i 2016

- o=

Supersizing self-supervision
Pinto & Gupta
2016

Stability and hyperparameter tuning

Devising stable RL algorithms is very hard

. . . BV
* Q-learning/value function estimation o
* Fitted Q/fitted value methods with deep network function
estimators are typically not contractions, hence no guarantee
of convergence |
* Lots of parameters for stability: target network delay, replay Ve -
buffer size, clipping, sensitivity to learning rates, etc. 4

Policy gradient/likelihood ratio/REINFORCE
* Very high variance gradient estimator
* Lots of samples, complex baselines, etc.
* Parameters: batch size, learning rate, design of baseline

Model-based RL algorithms
* Model class and fitting method

* Optimizing policy w.r.t. model non-trivial due to
backpropagation through time

Tuning hyperparameters

Grid Layout

* Get used to running multiple hyperparameters
 learning rate = [0.1, 0.5, 1.0, 5.0, 20.0]

* Grid layout for hyperparameter sweeps OK when
sweeping 1 or 2 parameters

Unimportant parameter

Important parameter

 Random layout generally more optimal, the only viable
option in higher dimensions

Random Layout

* Don’t forget the random seed!
* RLis self-reinforcing, very likely to get local optima
* Don’t assume it works well until you test a few random seeds
« Remember that random seed is not a hyperparameter!

Unimportant parameter

Important parameter

The challenge with hyperparameters

e Can’t run hyperparameter sweeps in the real
world

 How representative is your simulator? Usually the
answer is “not very”

* Actual sample complexity = time to run
algorithm x number of runs to sweep
* |In effect stochastic search + gradient-based
optimization

* Can we develop more stable algorithms that
are less sensitive to hyperparameters?

What can we do?

* Algorithms with favorable improvement and convergence properties
* Trust region policy optimization [Schulman et al. ‘16]
» Safe reinforcement learning, High-confidence policy improvement [Thomas ‘15]

e Algorithms that adaptively adjust parameters
* Q-Prop [Gu et al. “17]: adaptively adjust strength of control variate/baseline

e More research needed here!

* Not great for beating benchmarks, but absolutely essential to make RL a
viable tool for real-world problems

Sample Complexity

gradient-free methods
(e.g. NES, CMA, etc.)

4'

fully online methods
(e.g. A3C)

ﬁ

policy gradient methods
(e.g. TRPO)

ﬁ

replay buffer value estimation methods

(Q-learning, DDPG, NAF, etc.)

ﬁ

model-based deep RL
(e.g. guided policy search)

ﬁ

model-based “shallow” RL
(e.g. PILCO)

Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Reacher3 (3-DoF /3-dim. Actions) Cheetah (9-DoF /6-dim. Actions)

d (27-DoF /21-dim. Actions) -

Tim Salimans' Jonathan Ho' Xi Chen' Ilya Sutskever'

half-cheetah (slightly different version)

Learnin g performance Episode Total Reward ¥ Episode *

Wang et al. ‘17

4000

100,000,000 steps
(100,000 episodes)

TI%PO+GiAE (Schulma‘:n et aIt. ‘16) \ 10,000,000 steps (~ 15 days real time)

(10,000 episodes)

half-cheetah (~ 1.5 days real time)

1,000,000 steps
(1,000 episodes)
(~ 3 hours real time)

AverageReturn

0 1000 2000 3000 4000 5000 6000

Episodes
‘ 035 :
Gu et al. ‘16 —
0.30 — TRPO
-- MDGPS
0.25 PIGPS
— PILQR-MDGPS
g o020F
% 0.15 .
about 20 minutes of
g o0
| cart-pole cart-double-pole unicycle \ 1
e = . R experience on a real
trials <10 20-30 =~ 20
experience ~ 20s =~ 60s-90s ~ 20s-30s 0.0 1OX ga p rO bOt
parameter space R30% R'816 R?® ~0.05 . =

10° 10! 10? 10° 10 10°
samples

Chebotar et al. "17 (note log scale)

What about more realistic tasks?

* Big cost paid for dimensionality
* Big cost paid for using raw images

* Big cost in the presence of real-world diversity
(many tasks, many situations, etc.)

The challenge with sample complexity

* Need to wait for a long time for your nEB_3
homework to finish running

e Real-world learning becomes difficult or
impractical

* Precludes the use of expensive, high-fidelity
simulators

* Limits applicability to real-world problems

What can we do?

* Better model-based RL algorithms

e Design faster algorithms
 Q-Prop (Gu et al. “17): policy gradient algorithm that is as fast as value estimation

e Learning to play in a day (He et al. “17): Q-learning algorithm that is much faster
on Atari than DQN

e Reuse prior knowledge to accelerate reinforcement learning
e RL2: Fast reinforcement learning via slow reinforcement learning (Duan et al. “17)

e Learning to reinforcement learning (Wang et al. ‘17)
 Model-agnostic meta-learning (Finn et al. ‘17)

Scaling up deep RL & generalization

 Large-scale
 Emphasizes diversity
* Evaluated on generalization

* Small-scale
* Emphasizes mastery
* Evaluated on performance

* Where is the generalization?

Generalizing from massive experience

Levine et al. 2016

Pinto & Gupta, 2015

Generalizing from multi-task learning

* Train on multiple tasks, then try to generalize or finetune
 Policy distillation (Rusu et al. ‘15)
e Actor-mimic (Parisotto et al. ‘15)
* Model-agnostic meta-learning (Finn et al. ‘17)
* many others...

* Unsupervised or weakly supervised learning of diverse behaviors
e Stochastic neural networks (Florensa et al. ‘17)
* Reinforcement learning with deep energy-based policies (Haarnoja et al. ‘17)
* many others...

Generalizing from prior knowledge &
experience

* Can we get better generalization by leveraging off-policy data?

* Model-based methods: perhaps a good avenue, since the model (e.g.
physics) is more task-agnostic

* What does it mean to have a “feature” of decision making, in the same
sense that we have “features” in computer vision?

e Options framework (mini behaviors)

 Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement
learning (Sutton et al. ’99)

* The option-critic architecture (Bacon et al. ‘16)
* Muscle synergies & low-dimensional spaces
e Unsupervised learning of sensorimotor primitives (Todorov & Gahramani '03)

Reward specification

* If you want to learn from many reward
different tasks, you need to get those
tasks somewhere!

* Learn objectives/rewards from
demonstration (inverse
reinforcement learning)

Mnih et al.’15

* Generate objectives automatically? reinforcement learning agent what is the reward?

Learning as the basis of intelligence

* Reinforcement learning = can reason about
decision making

* Deep models = allows RL algorithms to
learn and represent complex input-output
mappings

Deep models are what allow
reinforcement learning algorithms to
solve complex problems end to end!

What can deep learning & RL do well now?

* Acquire high degree of proficiency in
domains governed by simple, known
rules

e Learn simple skills with raw sensory
inputs, given enough experience

* Learn from imitating enough human-
provided expert behavior

What has proven challenging so far?

* Humans can learn incredibly quickly
* Deep RL methods are usually slow

* Humans can reuse past knowledge
* Transfer learning in deep RL is an open problem

* Not clear what the reward function should be
* Not clear what the role of prediction should be

What is missing?

How Much Information Does rfhe Machine Need to"Predict?
| Y LeCun

"Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar
reward given once in a while.

> A few bits for some samples

Supervised Learning (icing)

» The machine predicts a category
or a few numbers for each input

» Predicting human-supplied data
» 10-10,000 bits per sample

Unsupervised/Predictive Learning (cake)

» The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos
» Millions of bits per sample

4 (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Where does the supervision come from?

* Yann LeCun’s cake
e Unsupervised or self-supervised learning
* Model learning (predict the future)
* Generative modeling of the world
* Lots to do even before you accomplish your goall!

* Imitation & understanding other agents
* We are social animals, and we have culture — for a reason!

* The giant value backup
 Allit takes is one +1

e All of the above

How should we answer these questions?

* Pick the right problems!
* Pay attention to generative models, prediction
 Carefully understand the relationship between RL and other ML fields

) UNIVERSE

Measurement and training for
artificial intelligence.

