Advanced Imitation Learning
Challenges and Open Problems
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Imitation vs. Reinforcement Learning

imitation learning reinforcement learning
* Requires demonstrations * Requires reward function
* Must address distributional shift * Must address exploration

e Simple, stable supervised learning ¢ Potentially non-convergent RL
* Only as good as the demo * Can become arbitrarily good

Can we get the best of both?

e.g., what if we have demonstrations and rewards?



Addressing distributional shift with RL?
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Addressing distributional shift with RL?

IRL already addresses distributional shift via RL
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this part is regular “forward” RL

But it doesn’t use a known reward function!



Simplest combination: pretrain & finetune

 Demonstrations can overcome exploration: show us how to do the task
* Reinforcement learning can improve beyond performance of the demonstrator

* |dea: initialize with imitation learning, then finetune with reinforcement learning!

collected demonstration data (s;,a;)
initialize 7y as maxy Y . log mo(a;|s;)

. run 7y to collect experience

S

improve mg with any RL algorithm



Simplest combination: pretrain & finetune

Muelling et al. ‘13



Simplest combination: pretrain & finetune

Pretrain & finetune

. collected demonstration data (s;,a;)
initialize mg as maxy ) . logmg(a;s;)

run g to collect experience
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improve my with any RL algorithm

vs. DAgger

1. train my(as|os) from human data D = {o1,a;,...,0n,an}
2. run mg(a;|oy) to get dataset D = {01,...,05}

3. Ask human to label D, with actions a;

4. Aggregate: D < DU D,



What’s the problem?

Pretrain & finetune

1. collected demonstration data (s;,a;)

2. initialize mp as maxg ), log mg(ay|s;)

3. run 7y to collect experience « can be very bad (due to distribution shift)
4. improve mp with any RL algorithm < first batch of (very) bad data can

destroy initialization

Can we avoid forgetting the demonstrations?



Off-policy reinforcement learning

e Off-policy RL can use any data

* |f we let it use demonstrations as off-policy samples, can that mitigate the
exploration challenges?

* Since demonstrations are provided as data in every iteration, they are never forgotten
e But the policy can still become better than the demos, since it is not forced to mimic them

off-policy policy gradient (with importance sampling)

off-policy Q-learning



Policy gradient with demonstrations
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Why is this a good idea? Don’t we want on-policy
samples?

best sampling distribution should have high reward!
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optimal importance sampling

say we want Fp [ f(z)]
By lf (@) = % X, 258 £ ()

which q(x) gives lowest variance?

answer: ¢(z) o< p(z)|f ()]



Policy gradient with demonstrations

t

T

T\ A |Syr
ZV@logﬂg(at|st) (H gat||st ) (Zr S/, Ay )]
t:1 tf t/

t'=1 t'=t

VoJ(0) = Z

T€D

How do we construct the sampling distribution?

standard IS

_ : e : : 5 .
problem 1: which distribution did the demonstrations come from? E, (x)[ f(z)] ~ % Zz ggw : Flx:)

option 1: use supervised behavior cloning to approximate Tgemo ' self-normalized IS

option 2: assume Diract delta: mTgemo(7) = %5(7‘ € D) By f(x)] = (m F D ggxz)f(x’)
\ ZJ Z(w t ol

this works best with self-normalized importance sampling

problem 2: what to do if we have multiple distributions?

fusion distribution: q(z) = 57 >, ¢:(z)



Example: importance sampling with demos
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Levine, Koltun ’"13. “Guided policy search”



Q-learning with demonstrations

* Q-learning is already off-policy, no need to bother with
importance weights!

» Simple solution: drop demonstrations into the replay buffer

full Q-learning with replay buffer:
initialize B to contain the demonstration data

1. collect dataset {(s;,a;, s}, r;)} using some policy, add it to B

2. sample a batch (sz, a;,s;,r;) from B

3. ¢ < Qb—ofzz A = (si,a:)(Qp(si, a;) — [r(si; a;) +y maxa Qu(s],aj)])

K X



Q-learning with demonstrations

(a) Peg Insertion Task. (b) Hard-drive Task.

o

(c) Clip Insertion Task (d) Cable Insertion Task.

Vecerik et al., ‘17, “Leveraging Demonstrations for Deep Reinforcement Learning...”



What’s the problem?

Importance sampling: recipe for getting stuck
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Q-learning: just good data is not enough
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So far...

e Pure imitation learning
e Easy and stable supervised learning
* Distributional shift
* No chance to get better than the demonstrations

Pure reinforcement learning
* Unbiased reinforcement learning, can get arbitrarily good
e Challenging exploration and optimization problem

Initialize & finetune
e Almost the best of both worlds
 ...but can forget demo initialization due to distributional shift

Pure reinforcement learning, with demos as off-policy data
* Unbiased reinforcement learning, can get arbitrarily good
 Demonstrations don’t always help

Can we strike a compromise? A little bit of supervised, a little bit of RL?



Imitation as an auxiliary loss function

imitation objective: Z(s,a)eDdemo log mg(als) (Or some variant of thiS)

RL objective: Er,[r(s,a)] (or some variant of this)

hybrid objective: Ex,[r(s,a)l + A) g ayep,.... logmo(als)

need to be careful in choosing this weight



Example: hybrid policy gradient

standard policy gradient

/

Jaug = Z Volnmg(als)A™ (s, a)+

(s,0)€pn Learned Policies
Z Volnmg(a®|s)w(s,a™)
(s.a*)€pp \

increase demo likelihood

Rajeswaran et al., ‘17, “Learning Complex Dexterous Manipulation...”



Example: hybrid Q-learning

J(Q) = Jpq(Q) + M Jn(Q) + A2 JE(Q) + A3 J12(Q).

Q-learning loss

n-step Q-learning loss

Loss Ablations: Montezuma Revenge
QD
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JE(Q) = max

Loss Ablations: Qbert
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What’s the problem?

hybrid objective: Ex,[r(s,a)] + A) g ayep,.... l0gmo(als)

* Need to tune the weight
* The design of the objective, esp. for imitation, takes a lot of care

* Algorithm becomes problem-dependent



Pure imitation learning
e Easy and stable supervised learning
 Distributional shift
* No chance to get better than the demonstrations

Pure reinforcement learning
e Unbiased reinforcement learning, can get arbitrarily good
e Challenging exploration and optimization problem

Initialize & finetune
* Almost the best of both worlds
 ...but can forget demo initialization due to distributional shift

Pure reinforcement learning, with demos as off-policy data
* Unbiased reinforcement learning, can get arbitrarily good
 Demonstrations don’t always help

Hybrid objective, imitation as an “auxiliary loss”
* Like initialization & finetuning, almost the best of both worlds
* No forgetting
e But no longer pure RL, may be biased, may require lots of tuning
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Challenges in Deep Reinforcement Learning
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Supersizing self-supervision
Pinto & Gupta
2016




Stability and hyperparameter tuning

Devising stable RL algorithms is very hard

. . . BV
* Q-learning/value function estimation o
* Fitted Q/fitted value methods with deep network function
estimators are typically not contractions, hence no guarantee
of convergence |
* Lots of parameters for stability: target network delay, replay Ve -
buffer size, clipping, sensitivity to learning rates, etc. 4

Policy gradient/likelihood ratio/REINFORCE
* Very high variance gradient estimator
* Lots of samples, complex baselines, etc.
* Parameters: batch size, learning rate, design of baseline

Model-based RL algorithms
* Model class and fitting method

* Optimizing policy w.r.t. model non-trivial due to
backpropagation through time



Tuning hyperparameters

Grid Layout

* Get used to running multiple hyperparameters
 learning rate = [0.1, 0.5, 1.0, 5.0, 20.0]

* Grid layout for hyperparameter sweeps OK when
sweeping 1 or 2 parameters

Unimportant parameter

Important parameter

 Random layout generally more optimal, the only viable
option in higher dimensions

Random Layout

* Don’t forget the random seed!
* RLis self-reinforcing, very likely to get local optima
* Don’t assume it works well until you test a few random seeds
« Remember that random seed is not a hyperparameter!

Unimportant parameter

Important parameter



The challenge with hyperparameters

e Can’t run hyperparameter sweeps in the real
world

 How representative is your simulator? Usually the
answer is “not very”

* Actual sample complexity = time to run
algorithm x number of runs to sweep
* |In effect stochastic search + gradient-based
optimization

* Can we develop more stable algorithms that
are less sensitive to hyperparameters?



What can we do?

* Algorithms with favorable improvement and convergence properties
* Trust region policy optimization [Schulman et al. ‘16]
» Safe reinforcement learning, High-confidence policy improvement [Thomas ‘15]

e Algorithms that adaptively adjust parameters
* Q-Prop [Gu et al. “17]: adaptively adjust strength of control variate/baseline

e More research needed here!

* Not great for beating benchmarks, but absolutely essential to make RL a
viable tool for real-world problems



Sample Complexity



gradient-free methods
(e.g. NES, CMA, etc.)

4'

fully online methods
(e.g. A3C)

ﬁ

policy gradient methods
(e.g. TRPO)

ﬁ

replay buffer value estimation methods

(Q-learning, DDPG, NAF, etc.)

ﬁ

model-based deep RL
(e.g. guided policy search)

ﬁ

model-based “shallow” RL
(e.g. PILCO)

Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Reacher3 (3-DoF /3-dim. Actions) Cheetah (9-DoF /6-dim. Actions)

d (27-DoF /21-dim. Actions) -

Tim Salimans' Jonathan Ho' Xi Chen' Ilya Sutskever'

half-cheetah (slightly different version)

Learnin g performance Episode Total Reward ¥ Episode *

Wang et al. ‘17
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What about more realistic tasks?

* Big cost paid for dimensionality
* Big cost paid for using raw images

* Big cost in the presence of real-world diversity
(many tasks, many situations, etc.)




The challenge with sample complexity

* Need to wait for a long time for your nEB_3
homework to finish running

e Real-world learning becomes difficult or
impractical

* Precludes the use of expensive, high-fidelity
simulators

* Limits applicability to real-world problems




What can we do?

* Better model-based RL algorithms

e Design faster algorithms
 Q-Prop (Gu et al. “17): policy gradient algorithm that is as fast as value estimation

e Learning to play in a day (He et al. “17): Q-learning algorithm that is much faster
on Atari than DQN

e Reuse prior knowledge to accelerate reinforcement learning
e RL2: Fast reinforcement learning via slow reinforcement learning (Duan et al. “17)

e Learning to reinforcement learning (Wang et al. ‘17)
 Model-agnostic meta-learning (Finn et al. ‘17)



Scaling up deep RL & generalization

 Large-scale
 Emphasizes diversity
* Evaluated on generalization

* Small-scale
* Emphasizes mastery
* Evaluated on performance

* Where is the generalization?



Generalizing from massive experience

Levine et al. 2016

Pinto & Gupta, 2015



Generalizing from multi-task learning

* Train on multiple tasks, then try to generalize or finetune
 Policy distillation (Rusu et al. ‘15)
e Actor-mimic (Parisotto et al. ‘15)
* Model-agnostic meta-learning (Finn et al. ‘17)
* many others...

* Unsupervised or weakly supervised learning of diverse behaviors
e Stochastic neural networks (Florensa et al. ‘17)
* Reinforcement learning with deep energy-based policies (Haarnoja et al. ‘17)
* many others...



Generalizing from prior knowledge &
experience

* Can we get better generalization by leveraging off-policy data?

* Model-based methods: perhaps a good avenue, since the model (e.g.
physics) is more task-agnostic

* What does it mean to have a “feature” of decision making, in the same
sense that we have “features” in computer vision?

e Options framework (mini behaviors)

 Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement
learning (Sutton et al. ’99)

* The option-critic architecture (Bacon et al. ‘16)
* Muscle synergies & low-dimensional spaces
e Unsupervised learning of sensorimotor primitives (Todorov & Gahramani '03)



Reward specification

* If you want to learn from many reward
different tasks, you need to get those
tasks somewhere!

* Learn objectives/rewards from
demonstration (inverse
reinforcement learning)

Mnih et al.’15

* Generate objectives automatically? reinforcement learning agent what is the reward?



Learning as the basis of intelligence

* Reinforcement learning = can reason about
decision making

* Deep models = allows RL algorithms to
learn and represent complex input-output
mappings

Deep models are what allow
reinforcement learning algorithms to
solve complex problems end to end!




What can deep learning & RL do well now?

* Acquire high degree of proficiency in
domains governed by simple, known
rules

e Learn simple skills with raw sensory
inputs, given enough experience

* Learn from imitating enough human-
provided expert behavior




What has proven challenging so far?

* Humans can learn incredibly quickly
* Deep RL methods are usually slow

* Humans can reuse past knowledge
* Transfer learning in deep RL is an open problem

* Not clear what the reward function should be
* Not clear what the role of prediction should be



What is missing?

How Much Information Does rfhe Machine Need to"Predict?
| Y LeCun

# "Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar
reward given once in a while.

> A few bits for some samples

# Supervised Learning (icing)

» The machine predicts a category
or a few numbers for each input

» Predicting human-supplied data
» 10-10,000 bits per sample

# Unsupervised/Predictive Learning (cake)

» The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos
» Millions of bits per sample

4 (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)




Where does the supervision come from?

* Yann LeCun’s cake
e Unsupervised or self-supervised learning
* Model learning (predict the future)
* Generative modeling of the world
* Lots to do even before you accomplish your goall!

* Imitation & understanding other agents
* We are social animals, and we have culture — for a reason!

* The giant value backup
 Allit takes is one +1

e All of the above



How should we answer these questions?

* Pick the right problems!
* Pay attention to generative models, prediction
 Carefully understand the relationship between RL and other ML fields

) UNIVERSE

Measurement and training for
artificial intelligence.




