## Advanced Imitation Learning Challenges and Open Problems

CS 294-112: Deep Reinforcement Learning

Sergey Levine

#### Imitation Learning





#### Reinforcement Learning





Imitation vs. Reinforcement Learning

#### imitation learning

- Requires demonstrations
- Must address distributional shift
- Simple, stable supervised learning
- Only as good as the demo

#### reinforcement learning

- Requires reward function
- Must address exploration
- Potentially non-convergent RL
- Can become arbitrarily good

#### Can we get the best of both?

e.g., what if we have demonstrations and rewards?

#### Addressing distributional shift with RL?



#### Addressing distributional shift with RL?

#### IRL *already* addresses distributional shift via RL



this part is regular "forward" RL

But it doesn't use a known reward function!

#### Simplest combination: pretrain & finetune

- Demonstrations can overcome exploration: show us how to do the task
- Reinforcement learning can improve beyond performance of the demonstrator
- Idea: initialize with imitation learning, then finetune with reinforcement learning!

- 1. collected demonstration data  $(\mathbf{s}_i, \mathbf{a}_i)$
- 2. initialize  $\pi_{\theta}$  as  $\max_{\theta} \sum_{i} \log \pi_{\theta}(\mathbf{a}_{i} | \mathbf{s}_{i})$
- 3. run  $\pi_{\theta}$  to collect experience
- 4. improve  $\pi_{\theta}$  with any RL algorithm

#### Simplest combination: pretrain & finetune



#### Simplest combination: pretrain & finetune

#### Pretrain & finetune

- 1. collected demonstration data  $(\mathbf{s}_i, \mathbf{a}_i)$
- 2. initialize  $\pi_{\theta}$  as  $\max_{\theta} \sum_{i} \log \pi_{\theta}(\mathbf{a}_{i} | \mathbf{s}_{i})$
- 3. run  $\pi_{\theta}$  to collect experience
- 4. improve  $\pi_{\theta}$  with any RL algorithm

#### vs. DAgger

1. train  $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$  from human data  $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run  $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$  to get dataset  $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label  $\mathcal{D}_{\pi}$  with actions  $\mathbf{a}_t$ 4. Aggregate:  $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$ 

#### What's the problem?

#### Pretrain & finetune

- 1. collected demonstration data  $(\mathbf{s}_i, \mathbf{a}_i)$
- 2. initialize  $\pi_{\theta}$  as  $\max_{\theta} \sum_{i} \log \pi_{\theta}(\mathbf{a}_{i} | \mathbf{s}_{i})$
- ⇒ 3. run  $\pi_{\theta}$  to collect experience ← can be very bad (due to distribution shift) 4. improve  $\pi_{\theta}$  with any RL algorithm ← first batch of (very) bad data can

#### Can we avoid forgetting the demonstrations?

## Off-policy reinforcement learning

- Off-policy RL can use any data
- If we let it use demonstrations as off-policy samples, can that mitigate the exploration challenges?
  - Since demonstrations are provided as data in every iteration, they are never forgotten
  - But the policy can still become *better* than the demos, since it is not forced to mimic them

off-policy policy gradient (with importance sampling)

off-policy Q-learning

#### Policy gradient with demonstrations

$$\nabla_{\theta} J(\theta) = \sum_{\tau \in \mathcal{D}} \left[ \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \left( \prod_{t'=1}^{t} \frac{\pi_{\theta}(\mathbf{a}_{t'} | \mathbf{s}_{t'})}{q(\mathbf{a}_{t'} | \mathbf{s}_{t'})} \right) \left( \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right) \right]$$

includes demonstrations and experience

Why is this a good idea? Don't we want on-policy samples?

best sampling distribution should have high reward!



optimal importance sampling say we want  $E_{p(x)}[f(x)]$  $E_{p(x)}[f(x)] \approx \frac{1}{N} \sum_{i} \frac{p(x_i)}{q(x_i)} f(x_i)$ which q(x) gives lowest variance? answer:  $q(x) \propto p(x)|f(x)|$ 

#### Policy gradient with demonstrations

$$\nabla_{\theta} J(\theta) = \sum_{\tau \in \mathcal{D}} \left[ \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \left( \prod_{t'=1}^{t} \frac{\pi_{\theta}(\mathbf{a}_{t'} | \mathbf{s}_{t'})}{q(\mathbf{a}_{t'} | \mathbf{s}_{t'})} \right) \left( \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right) \right]$$

How do we construct the sampling distribution?

problem 1: which distribution did the demonstrations come from?  $E_{p(0)}$ option 1: use supervised behavior cloning to approximate  $\pi_{demo}$  self option 2: assume Diract delta:  $\pi_{demo}(\tau) = \frac{1}{N} \delta(\tau \in D)$ 

$$\begin{aligned} & \text{standard IS} \\ & E_{p(x)}[f(x)] \approx \frac{1}{N} \sum_{i} \frac{p(x_i)}{q(x_i)} f(x_i) \\ & \text{self-normalized IS} \\ & E_{p(x)}[f(x)] \approx \frac{1}{\sum_{j} \frac{p(x_j)}{q(x_j)}} \sum_{i} \frac{p(x_i)}{q(x_i)} f(x_i) \end{aligned}$$

this works best with self-normalized importance sampling

problem 2: what to do if we have multiple distributions?

fusion distribution:  $q(x) = \frac{1}{M} \sum_{i} q_i(x)$ 

#### Example: importance sampling with demos

$$\nabla_{\theta} J(\theta) = \sum_{\tau \in \mathcal{D}} \left[ \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \left( \prod_{t'=1}^{t} \frac{\pi_{\theta}(\mathbf{a}_{t'} | \mathbf{s}_{t'})}{q(\mathbf{a}_{t'} | \mathbf{s}_{t'})} \right) \left( \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right) \right]$$



Levine, Koltun '13. "Guided policy search"

#### Q-learning with demonstrations

- Q-learning is *already* off-policy, no need to bother with importance weights!
- Simple solution: drop demonstrations into the replay buffer

```
full Q-learning with replay buffer:

initialize \mathcal{B} to contain the demonstration data

1. collect dataset \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\} using some policy, add it to \mathcal{B}

\mathcal{K} \times 

2. sample a batch (\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i) from \mathcal{B}

3. \phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)])
```

#### Q-learning with demonstrations



(a) Peg Insertion Task.



(b) Hard-drive Task.



(c) Clip Insertion Task



(d) Cable Insertion Task.



Vecerik et al., '17, "Leveraging Demonstrations for Deep Reinforcement Learning..."

#### What's the problem?

Importance sampling: recipe for getting stuck

$$\nabla_{\theta} J(\theta) = \sum_{\tau \in \mathcal{D}} \left[ \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \left( \prod_{t'=1}^{t} \frac{\pi_{\theta}(\mathbf{a}_{t'} | \mathbf{s}_{t'})}{q(\mathbf{a}_{t'} | \mathbf{s}_{t'})} \right) \left( \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right) \right]$$





Q-learning: just good data is not enough



## So far...

#### • Pure imitation learning

- Easy and stable supervised learning
- Distributional shift
- No chance to get better than the demonstrations
- Pure reinforcement learning
  - Unbiased reinforcement learning, can get arbitrarily good
  - Challenging exploration and optimization problem
- Initialize & finetune
  - Almost the best of both worlds
  - ...but can forget demo initialization due to distributional shift
- Pure reinforcement learning, with demos as off-policy data
  - Unbiased reinforcement learning, can get arbitrarily good
  - Demonstrations don't always help
- Can we strike a compromise? A little bit of supervised, a little bit of RL?

#### Imitation as an auxiliary loss function

imitation objective:  $\sum_{(\mathbf{s},\mathbf{a})\in\mathcal{D}_{demo}}\log\pi_{\theta}(\mathbf{a}|\mathbf{s})$ 

(or some variant of this)

RL objective:  $E_{\pi_{\theta}}[r(\mathbf{s}, \mathbf{a})]$ 

(or some variant of this)

hybrid objective:  $E_{\pi_{\theta}}[r(\mathbf{s}, \mathbf{a})] + \lambda \sum_{(\mathbf{s}, \mathbf{a}) \in \mathcal{D}_{demo}} \log \pi_{\theta}(\mathbf{a} | \mathbf{s})$ Note that the second secon

#### Example: hybrid policy gradient

standard policy gradient  

$$\int_{aug} g_{aug} = \sum_{(s,a)\in\rho_{\pi}} \nabla_{\theta} \ln \pi_{\theta}(a|s) A^{\pi}(s,a) + \sum_{(s,a^{*})\in\rho_{D}} \nabla_{\theta} \ln \pi_{\theta}(a^{*}|s) w(s,a^{*})$$
increase demo likelihood



Rajeswaran et al., '17, "Learning Complex Dexterous Manipulation..."

#### Example: hybrid Q-learning



margin-based loss on example action



Hester et al., '17, "Learning from Demonstrations..."

#### What's the problem?

hybrid objective:  $E_{\pi_{\theta}}[r(\mathbf{s}, \mathbf{a})] + \lambda \sum_{(\mathbf{s}, \mathbf{a}) \in \mathcal{D}_{demo}} \log \pi_{\theta}(\mathbf{a} | \mathbf{s})$ 

- Need to tune the weight
- The design of the objective, esp. for imitation, takes a lot of care
- Algorithm becomes problem-dependent

- Pure imitation learning
  - Easy and stable supervised learning
  - Distributional shift
  - No chance to get better than the demonstrations
- Pure reinforcement learning
  - Unbiased reinforcement learning, can get arbitrarily good
  - Challenging exploration and optimization problem
- Initialize & finetune
  - Almost the best of both worlds
  - ...but can forget demo initialization due to distributional shift
- Pure reinforcement learning, with demos as off-policy data
  - Unbiased reinforcement learning, can get arbitrarily good
  - Demonstrations don't always help
- Hybrid objective, imitation as an "auxiliary loss"
  - Like initialization & finetuning, almost the best of both worlds
  - No forgetting
  - But no longer pure RL, may be biased, may require lots of tuning

# Break

#### Challenges in Deep Reinforcement Learning

#### Some recent work on deep RL







Trust region policy optimization Schulman et al. 2015



Supersizing self-supervision Pinto & Gupta 2016

## Stability and hyperparameter tuning

- Devising stable RL algorithms is very hard
- Q-learning/value function estimation
  - Fitted Q/fitted value methods with deep network function estimators are typically not contractions, hence no guarantee of convergence
  - Lots of parameters for stability: target network delay, replay buffer size, clipping, sensitivity to learning rates, etc.
- Policy gradient/likelihood ratio/REINFORCE
  - Very high variance gradient estimator
  - Lots of samples, complex baselines, etc.
  - Parameters: batch size, learning rate, design of baseline
- Model-based RL algorithms
  - Model class and fitting method
  - Optimizing policy w.r.t. model non-trivial due to backpropagation through time



#### Tuning hyperparameters

- Get used to running multiple hyperparameters
  - learning\_rate = [0.1, 0.5, 1.0, 5.0, 20.0]
- Grid layout for hyperparameter sweeps OK when sweeping 1 or 2 parameters
- Random layout generally more optimal, the only viable option in higher dimensions
- Don't forget the random seed!
  - RL is self-reinforcing, very likely to get local optima
  - Don't assume it works well until you test a few random seeds
  - Remember that random seed is not a hyperparameter!





## The challenge with hyperparameters

- Can't run hyperparameter sweeps in the real world
  - How representative is your simulator? Usually the answer is "not very"
- Actual sample complexity = time to run algorithm x number of runs to sweep
  - In effect stochastic search + gradient-based optimization
- Can we develop more stable algorithms that are less sensitive to hyperparameters?



#### What can we do?

- Algorithms with favorable improvement and convergence properties
  - Trust region policy optimization [Schulman et al. '16]
  - Safe reinforcement learning, High-confidence policy improvement [Thomas '15]
- Algorithms that adaptively adjust parameters
  - Q-Prop [Gu et al. '17]: adaptively adjust strength of control variate/baseline

- More research needed here!
- Not great for beating benchmarks, but absolutely essential to make RL a viable tool for real-world problems

# Sample Complexity



#### What about more realistic tasks?

- Big cost paid for dimensionality
- Big cost paid for using raw images
- Big cost in the presence of real-world diversity (many tasks, many situations, etc.)











## The challenge with sample complexity

- Need to wait for a long time for your homework to finish running
- Real-world learning becomes difficult or impractical
- Precludes the use of expensive, high-fidelity simulators
- Limits applicability to real-world problems





#### What can we do?

- Better model-based RL algorithms
- Design faster algorithms
  - Q-Prop (Gu et al. '17): policy gradient algorithm that is as fast as value estimation
  - Learning to play in a day (He et al. '17): Q-learning algorithm that is much faster on Atari than DQN
- Reuse prior knowledge to accelerate reinforcement learning
  - RL2: Fast reinforcement learning via slow reinforcement learning (Duan et al. '17)
  - Learning to reinforcement learning (Wang et al. '17)
  - Model-agnostic meta-learning (Finn et al. '17)

## Scaling up deep RL & generalization



- Large-scale
- Emphasizes diversity
- Evaluated on generalization



- Small-scale
- Emphasizes mastery
- Evaluated on performance
- Where is the generalization?

#### Generalizing from massive experience





Levine et al. 2016

Pinto & Gupta, 2015

#### Generalizing from multi-task learning

- Train on multiple tasks, then try to generalize or finetune
  - Policy distillation (Rusu et al. '15)
  - Actor-mimic (Parisotto et al. '15)
  - Model-agnostic meta-learning (Finn et al. '17)
  - many others...
- Unsupervised or weakly supervised learning of diverse behaviors
  - Stochastic neural networks (Florensa et al. '17)
  - Reinforcement learning with deep energy-based policies (Haarnoja et al. '17)
  - many others...

# Generalizing from prior knowledge & experience

- Can we get better generalization by leveraging off-policy data?
- Model-based methods: perhaps a good avenue, since the model (e.g. physics) is more task-agnostic
- What does it mean to have a "feature" of decision making, in the same sense that we have "features" in computer vision?
  - Options framework (mini behaviors)
    - Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning (Sutton et al. '99)
    - The option-critic architecture (Bacon et al. '16)
  - Muscle synergies & low-dimensional spaces
    - Unsupervised learning of sensorimotor primitives (Todorov & Gahramani '03)

#### Reward specification

- If you want to learn from many different tasks, you need to get those tasks somewhere!
- Learn objectives/rewards from demonstration (inverse reinforcement learning)
- Generate objectives automatically?



Mnih et al. '15 reinforcement learning agent



what is the reward?

#### Learning as the basis of intelligence



- Reinforcement learning = can reason about decision making
- Deep models = allows RL algorithms to learn and represent complex input-output mappings

Deep models are what allow reinforcement learning algorithms to solve complex problems end to end!

#### What can deep learning & RL do well now?

- Acquire high degree of proficiency in domains governed by simple, known rules
- Learn simple skills with raw sensory inputs, given enough experience
- Learn from imitating enough humanprovided expert behavior







## What has proven challenging so far?

- Humans can learn incredibly quickly
  - Deep RL methods are usually slow
- Humans can reuse past knowledge
  - Transfer learning in deep RL is an open problem
- Not clear what the reward function should be
- Not clear what the role of prediction should be



#### What is missing?

#### How Much Information Does the Machine Need to Predict?

#### "Pure" Reinforcement Learning (cherry)

The machine predicts a scalar reward given once in a while.

A few bits for some samples

#### Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data

▶ 10→10,000 bits per sample

#### Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample



Y LeCun

(Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

#### Where does the supervision come from?

- Yann LeCun's cake
  - Unsupervised or self-supervised learning
  - Model learning (predict the future)
  - Generative modeling of the world
  - Lots to do even before you accomplish your goal!
- Imitation & understanding other agents
  - We are social animals, and we have culture for a reason!
- The giant value backup
  - All it takes is one +1
- All of the above

#### How should we answer these questions?

- Pick the right problems!
- Pay attention to generative models, prediction
- Carefully understand the relationship between RL and other ML fields





run



Swimmer-v1 Make a 2D cheetah robot Make a 2D robot swim.

Make a 2D robot hop.

#### **UNIVERSE**

Measurement and training for artificial intelligence.

LocoCycle-v0

coming-soon

VO



KerbalSpaceProgram-v0

InfiniFactory-v0





CivilizationV-v0







InsanelyTwistedShadowPlanet-Portal-v0

