Deep Reinforcement Learning
CS 294 - 112
Course logistics
Class Information & Resources

Sergey Levine
Assistant Professor
UC Berkeley

Abhishek Gupta
PhD Student
UC Berkeley

Josh Achiam
PhD Student
UC Berkeley

• Course website: rll.berkeley.edu/deeprlcourse/
• Piazza: UC Berkeley, CS294-112
• Subreddit (for non-enrolled students): www.reddit.com/r/berkeleydeeprlcourse/
• Office hours: after class each day (but not today), sign up in advance for a 10-minute slot on the course website
Prerequisities & Enrollment

• All enrolled students must have taken CS189, CS289, or CS281A
 • Please contact Sergey Levine if you haven’t
• Please enroll for 3 units
• Students on the wait list will be notified as slots open up
• Lectures will be recorded
 • Since the class is full, please watch the lectures online if you are not enrolled
What you should know

• Assignments will require training neural networks with standard automatic differentiation packages (TensorFlow by default)

• Review Section
 • Josh Achiam will teach a review section in week 3
 • You should be able to at least do the TensorFlow MNIST tutorial (if not, come to the review section and ask questions!)
What we’ll cover

• Full syllabus on course website
1. From supervised learning to decision making
2. Basic reinforcement learning: Q-learning and policy gradients
3. Advanced model learning and prediction, distillation, reward learning
4. Advanced deep RL: trust region policy gradients, actor-critic methods, exploration
5. Open problems, research talks, invited lectures
Assignments

1. Homework 1: Imitation learning (control via supervised learning)
2. Homework 2: Policy gradients ("REINFORCE")
3. Homework 3: Q learning with convolutional neural networks
4. Homework 4: Model-based reinforcement learning
5. Final project: Research-level project of your choice (form a group of up to 2-3 students, you’re welcome to start early!)

Grading: 40% homework (10% each), 60% project
Your “Homework” Today

1. Sign up for Piazza (see course website)
2. Start forming your final project groups, unless you want to work alone, which is fine
3. Fill out the enrolled student survey if you haven’t already!
4. Check out the TensorFlow MNIST tutorial, unless you’re a TensorFlow pro
What is reinforcement learning, and why should we care?
What is reinforcement learning?
Examples

Actions: muscle contractions
Observations: sight, smell
Rewards: food

Actions: motor current or torque
Observations: camera images
Rewards: task success measure (e.g., running speed)

Actions: what to purchase
Observations: inventory levels
Rewards: profit
What is deep RL, and why should we care?

Deep learning: end-to-end training of expressive, multi-layer models

Deep models are what allow reinforcement learning algorithms to solve complex problems end to end!
What does end-to-end learning mean for sequential decision making?
Action (run away)
sensorimotor loop

Action (run away)
Example: robotics

robotic control pipeline

- observations
- state estimation (e.g. vision)
- modeling & prediction
- planning
- low-level control
- controls

(modeling & prediction)

(planning)

(low-level control)

(controls)
Example: playing video games

video game
Al pipeline

game API
extract relevant features
state machine for behavior
planner
low-level bot control
controls
standard computer vision

features (e.g. HOG) → mid-level features (e.g. DPM) → classifier (e.g. SVM)
Felzenszwalb ‘08

deep learning

end-to-end training

robotic control pipeline

observations → state estimation (e.g. vision) → modeling & prediction → planning → low-level control → controls

end-to-end training

depth robotic learning

observations → end-to-end training → controls
no direct supervision

tiny, highly specialized “visual cortex”

tiny, highly specialized “motor cortex”

sensorimotor loop

no direct supervision

actions have consequences
The reinforcement learning problem

decisions (actions)

Actions: motor current or torque
Observations: camera images
Rewards: task success measure (e.g., running speed)

Deep models are what allow reinforcement learning algorithms to solve complex problems end to end!

Observations: words in English
Rewards: BLEU score

The reinforcement learning learning problem is the AI problem!
When do we **not** need to worry about sequential decision making?

When your system is making single isolated decision, e.g. classification, regression
When that decision does not affect future decisions
When **should** we worry about sequential decision making?

Limited supervision: you know **what** you want, but not **how** to get it

Actions have consequences

Common Applications

- autonomous driving
- business operations
- robotics
- language & dialogue (structured prediction)
- finance
Why should we study this now?

1. Advances in deep learning
2. Advances in reinforcement learning
3. Advances in computational capability
Why should we study this now?

Why should we study this now?

Atari games:
Q-learning:

Policy gradients:

Real-world robots:
Guided policy search:

Q-learning:

Beating Go champions:
Supervised learning + policy gradients + value functions + Monte Carlo tree search:
What other problems do we need to solve to enable real-world sequential decision making?
Beyond learning from reward

• Basic reinforcement learning deals with maximizing rewards
• This is not the only problem that matters for sequential decision making!
• We will cover more advanced topics
 • Learning reward functions from example (inverse reinforcement learning)
 • Transferring skills between domains
 • Learning to predict and using prediction to act
Where do rewards come from?

reinforcement learning agent

As human agents, we are accustomed to operating with rewards that are so sparse that we only experience them once or twice in a lifetime, if at all.
Are there other forms of supervision?

• Learning from demonstrations
 • Directly copying observed behavior
 • Inferring rewards from observed behavior (inverse reinforcement learning)

• Learning from observing the world
 • Learning to predict
 • Unsupervised learning

• Learning from other tasks
 • Transfer learning
 • Meta-learning: learning to learn
Imitation learning

Bojarski et al. 2016
More than imitation: inferring intentions

Warneken & Tomasello
Inverse RL examples

Finn et al. 2016
“the idea that we **predict the consequences of our motor commands** has emerged as an important theoretical concept in all aspects of sensorimotor control”
What can we do with a perfect model?

Mordatch et al. 2015
How do we build intelligent machines?
How do we build intelligent machines?

• Imagine you have to build an intelligent machine, where do you start?
Learning as the basis of intelligence

• Some things we can all do (e.g. walking)
• Some things we can only learn (e.g. driving a car)
• We can learn a huge variety of things, including very difficult things
• Therefore our learning mechanism(s) are likely powerful enough to do everything we associate with intelligence
 • But it may still be very convenient to “hard-code” a few really important bits
A single algorithm?

• An algorithm for each “module”?
• Or a single flexible algorithm?

[BrainPort; Martinez et al; Roe et al.]
adapted from A. Ng
What must that single algorithm do?

• Interpret rich sensory inputs

• Choose complex actions
Why deep reinforcement learning?

• Deep = can process complex sensory input
 ▪ ...and also compute really complex functions

• Reinforcement learning = can choose complex actions
Some evidence in favor of deep learning

Unsupervised learning models of primary cortical receptive fields and receptive field plasticity

Andrew Saxe, Maneesh Bhand, Ritvik Mudur, Bipin Suresh, Andrew Y. Ng
Department of Computer Science
Stanford University
{asaxe, mbhand, rmudur, bipolar, ang}@cs.stanford.edu
Some evidence for reinforcement learning

- Percepts that anticipate reward become associated with similar firing patterns as the reward itself
- Basal ganglia appears to be related to reward system
- Model-free RL-like adaptation is often a good fit for experimental data of animal adaptation
 - But not always...

Reinforcement learning in the brain

Yael Niv
Psychology Department & Princeton Neuroscience Institute, Princeton University
What can deep learning & RL do well now?

• Acquire high degree of proficiency in domains governed by simple, known rules
• Learn simple skills with raw sensory inputs, given enough experience
• Learn from imitating enough human-provided expert behavior
What has proven challenging so far?

• Humans can learn incredibly quickly
 • Deep RL methods are usually slow
• Humans can reuse past knowledge
 • Transfer learning in deep RL is an open problem
• Not clear what the reward function should be
• Not clear what the role of prediction should be
Instead of trying to produce a program to simulate the adult mind, why not rather try to produce one which simulates the child's? If this were then subjected to an appropriate course of education one would obtain the adult brain.

- Alan Turing