Introduction to
Reinforcement Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine

Class Notes

1. Homework 1 milestone in one week!
* Don’t be late!

2. Remember to start forming final project groups
3. MuloCo license was e-mailed to you

Today’s Lecture

1. Definition of a Markov decision process

2. Definition of reinforcement learning problem
3. Anatomy of a RL algorithm

4. Brief overview of RL algorithm types

* Goals:

* Understand definitions & notation
* Understand the underlying reinforcement learning objective
* Get summary of possible algorithms

Definitions

Terminology & notation

S; — state
0; — observation mg(as|o;) — policy
a; — action 7o (az|sy) — policy (fully observed)

Markov property
independent of s;_1

Imitation Learning

supervised
data learning

training 7o (az|oy)

Images: Bojarski et al. ‘16, NVIDIA

Reward functions

which action is better or worse? s, a, 7(s,a), and p(s'|s,a) define
r(s,a): reward function Markov decision process

tells us which states and actions are better

low reward

Definitions

Markov chain

M={S,T}

S — state space states s € S (discrete or continuous)

7T — transition operator p(si11]5¢) Andrey Markov
why “operator”? let pe = p(se = 1) fi; is a vector of probabilities

let T;j = p(si+1 = i[s¢ = j) then fipy1 =T

Markov property

@ 50 ‘@ independent of s;_1
: 2 G
p(St+1lst) p(St+1[st) \/

Definitions

Markov decision process M={SAT,r}
S — state space states s € S (discrete or continuous)
A — action space actions a € A (discrete or continuous)

T — transition operator (now a tensor!)

let pe; = p(se =7)

let & 1 = play = k) Ht,i = ;%,j,kut,jgt,k

let 'E,j,k = p(8t+1 — i’3t =J,a; = k)

Andrey Markov

Richard Bellman

Definitions

Markov decision process M={SAT,r}
S — state space states s € § (discrete or continuous)
A — action space actions a € A (discrete or continuous)

T — transition operator (now a tensor!) Andrey Markov

r — reward function r:SxA—R

r(s¢, a¢) — reward

Richard Bellman

Definitions

partially observed Markov decision process M={S5,A0,T,E r}
S — state space states s € § (discrete or continuous)

A — action space actions a € A (discrete or continuous)

O — observation space observations o € O (discrete or continuous)

T — transition operator (like before) @ @ @ @ @

£ — emission probability p(o¢|s;)

S1 S9

r — reward function r:SxA—R @

The goal of reinforcement learning

we’ll come back to partially observed later

\
\ \
1 1
AW W] \:3 \
” |13 3:- \—\I—'\ 13 £e’| [dens =] =)
N -
384 \
Max -
pppp 4056 409

(s'|s,a)
_J

T
po(s1 ..., 87, 87) = pls: H (a¢|se)p(ses1lse, ar)

|

7o (T)

0* = arg max Eorpe (1) [Zt: r(st, at)]

The goal of reinforcement learning

we’ll come back to partially observed later

\
\ \
1 1
AW W] \:3 \
” |13 3:- \—\I—'\ 13 £e’| [dens =] =)
N -
384 \
Max -
pppp 4056 409

(s'|s,a)
_J

po(si,a1,...,sr,ar) =p(s1) | | mo(arls:)p(sisilse, a)
L Y] t:]_l Y]
7o(T) Markov chain on (s, a)

The goal of reinforcement learning

we’ll come back to partially observed later

\
\ \
1 1
AW W] \:3 \
ks 3:- \—\I—'\ 13 e’ [dens » a #
N -
384 \
Max -
pppp 405 409

(s'|s,a)
_J

po(si,a1,...,sr,ar) =p(s1) | | mo(arls:)p(sisilse, a)
¢ T d t:]_ ¢ Y
7o(T) Markov chain on (s, a)

p((St+1,at41)|(St,a)) =
©) (=

P(St+1 |St, at)ﬂ'e(at—H |St—{—1)

v

v

®© ®

Finite horizon case: state-action marginal

0* = arg mgx Erpy () [Z r(s¢, at)]

t
T

— arg mgmx Z E(St,at)wpg (s¢,a¢) [T(St, at)] Do (St, at) state-action marginal
t=1

p((st+1,ai11)|(st,a1)) =

P(St+1 |St, at)’ﬁe(atﬂ |St+1)
. SR
&)

©©
®

Infinite horizon case: stationary distribution

T

6* = arg max ; E(s, a,)~po(si,a.) T (St at)]

what if T = o0?
does p(s¢,a;) converge to a stationary distribution?

w="Tu (T — I)LL — () n = pg(s, a) stationary distribution

N\ / p is eigenvector of 7 with eigenvalue 1!
stationary = the

same before and (always exists under some regularity conditions)

~—

after transition state-action transition operator

St+k _ Tk St
Ay Atk At

v

© &

AN
L'
=
~
|
=N —
AN
P

Infinite horizon case: stationary distribution

1 T

0* = arg max ; E(s, .a,)~po(se.a0) 7 (8t a¢)] = E(s a)~py(s,a)[7(S,)]

(in the limit as T — 00)
what if T' = oco?

does p(s¢,a;) converge to a stationary distribution?

w="Tu (T — I)LL — () n = pg(s, a) stationary distribution

N\ / p is eigenvector of 7 with eigenvalue 1!
stationary = the

same before and (always exists under some regularity conditions)

~—

after transition state-action transition operator

St+k _ Tk St
Ay Atk At

v

© &

AN
L'
=
~
|
=N —
AN
P

Expectations and stochastic systems

T
0" = arg max B(s a)p, (s.2)[1(5,2)] 0* = arg max Y " Es, a0)mpo(se,an) [7(St, at)]
t=1
infinite horizon case finite horizon case

In RL, we almost always care about expectations

r(s,a) — not smooth
1 — probability of falling

E(s a)~pu(s,a) [7(s,a)] — smooth in 1!

Algorithms

The anatomy of a reinforcement learning algorithm

compute Q = Y7, ¥ ~try (MC policy gradient)
fit a model/ -

estimate the return fit Q¢5(Sa a) (actor-critic, Q-learning)

estimate p(s’[s,a) (model-based)

generate samples

(i.e. run the policy)

6 < 0+ aVyJ(0) (policy gradient)
TSIEERGERCOAN 7(s) = arg max (D, (s, a) (Q-learning)
optimize my(als) (model-based)

Which parts are expensive?

& T r_
Q= Zt’:t 'Yt bry

trivial, fast
fit a model/

estimate the return fit qu(s’ a)

(real robot/car/power\
grid/whatever:
1x real time, until we
\invent time travel)

expensive, but non-
trivial to parallelize

generate samples

(i.e. run the policy)
MuloCo simulator:

up to 10000x real time
7(s) = argmax Q,(s,a)

trivial, nothing to do
improve the policy

optimize my(als) (model-based)

expensive, but non-
trivial to parallelize

Simple example: RL by backprop

backprop

backprop

fit a model/
collect data ﬁ estimate return

update the model f

generate

samples (i.e.
run the policy)

; improve the

policy

forward pass

backward pass & gradient step

Why is this not enough?

backprop

backprop

* Only handles deterministic dynamics
* Only handles deterministic policies

* Only continuous states and actions
* Very difficult optimization problem
* We’ll talk about this more later!

How can we work with stochastic systems?

Conditional expectations

T
Z E(Staat)NPQ (s¢,aq) [T(Sta at)]

t=1

ES1NP(51)

what if we knew this part?

Q(Sla 8_1) — T(Sla al) + ESQNp(SQ|sl,a1) |:E32N7T(32|Sg) [T(S%aQ) + -..|S2] |Sla al}

Eslwp(sl) |:E31N7T(al|81) [Q(Sla al)|SlH

AN

easy to modify mg(ay|sy) if Q(s1,a1) is known!

example: w(aj|s;) = 1 if a; = argmax,, Q(s1,a;)

Definition: Q-function

Q7 (s¢,a) = Zg::t Er, [r(sy,ay)|st, at]: total reward from taking a; in s;

Definition: value function

VT™(st) = ZtT,:t Er, [r(s¢,ap)|st]: total reward from s,

Ve (St) — Eat’\’ﬂ'(aﬂst)[@ﬂ (St’ at)]

Eg, ~p(s1)[V™(s1)] is the RL objective!

Using Q-functions and value functions

Idea 1: if we have policy 7, and we know Q™ (s, a), then we can improve T:
set m'(als) = 1 if a = arg max, Q™ (s, a)
this policy is at least as good as 7 (and probably better)!

and it doesn’t matter what 7 is

Idea 2: compute gradient to increase probability of good actions a:
if Q™ (s,a) > V7(s), then a is better than average (recall that V7 (s) = F[Q™(s,a)] under w(als))

modify 7(als) to increase probability of a if Q™ (s,a) > V7 (s)

These ideas are very important in RL; we’ll revisit them again and again!

Review

e Definitions
e Markov chain
* Markov decision process
. . estimate return
* RL objective ‘
e Expected reward i

* How to evaluate expected reward? run the policy)

; improve the

policy

* Structure of RL algorithms
e Sample generation
* Fitting a model/estimating return
* Policy Improvement

e Value functions and Q-functions

Break

Types of RL algorithms

0* = arg max ETNPQ(T) [Z ’l"(St, at)]

0
t

* Policy gradients: directly differentiate the above objective

* Value-based: estimate value function or Q-function of the optimal policy
(no explicit policy)

e Actor-critic: estimate value function or Q-function of the current policy,
use it to improve policy

* Model-based RL: estimate the transition model, and then...
» Use it for planning (no explicit policy)
e Use it to improve a policy
 Something else

Model-based RL algorithms

fit a model/

: learn p(s;i1lst, a
estimate the return p(st+1lst, ar)

generate samples
(i.e. run the policy)

Tl JE RN Lol [N o, few options

Model-based RL algorithms

1l oI (AR R[N 5 few options

1. Just use the model to plan (no policy)

* Trajectory optimization/optimal control (primarily in continuous spaces) —
essentially backpropagation to optimize over actions

* Discrete planning in discrete action spaces — e.g., Monte Carlo tree search

2. Backpropagate gradients into the policy
* Requires some tricks to make it work

3. Use the model to learn a value function
* Dynamic programming
* Generate simulated experience for model-free learner (Dyna)

Value function based algorithms

fit a model/
ﬁ eStImate the return ﬁ) or Q(Sj a)
generate samples
(i.e. run the policy)

IS set 7(s) = arg max, (s, a)

Direct policy gradients

fit a model/ evaluate returns
estimate the return [FiouEes Zt T(St, at)

generate samples

(i.e. run the policy)

improve the policy RS R N AVIY I P -:15]

Actor-critic: value functions + policy gradients

fit V(s) or Q(s,a)

fit a model/ ’
S5l it evaluate returns
using V or Q!

generate samples
(i.e. run the policy)
; improve the policy RS R N AVIY I P -:15]

radeoffs

Why so many RL algorithms?

e Different tradeoffs

e Sample efficiency
* Stability & ease of use

fit a model/
. . ﬁ estimate return
* Different assumptions

i inictic? generate
e Stochastic or deterministic: (e
e Continuous or discrete? run the policy)

; improve the

policy

 Episodic or infinite horizon?

* Different things are easy or hard in
different settings
* Easier to represent the policy?
e Easier to represent the model?

Comparison: sample efficiency

e Sample efficiency = how many samples
do we need to get a good policy?

* Most important question: is the generate l

fit a model/
estimate return

samples (i.e.

algorithm off policy? run the policy)

* Off policy: able to improve the policy
without generating new samples from that

improve the
policy

policy
0«0+ aVoLk r(s:, a
* On policy: each time the policy is changed, oE[>_; r(st, ar)]
even a little bit, we need to generate new
samples

just one gradient step

Comparison: sample efficiency

off-policy < » on-policy
More efficient Less efficient
(fewer samples) (more samples)
—
model-based model-based off-policy actor-critic on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!

Comparison: stability and ease of use

* Does it converge?
* And if it converges, to what?
* And does it converge every time?

Why is any of this even a question???

e Supervised learning: almost always gradient descent

* Reinforcement learning: often not gradient descent
* Q-learning: fixed point iteration
* Model-based RL: model is not optimized for expected reward
* Policy gradient: is gradient descent, but also often the least efficient!

Comparison: stability and ease of use

* Value function fitting
* At best, minimizes error of fit (“Bellman error”)
* Not the same as expected reward

e At worst, doesn’t optimize anything

 Many popular deep RL value fitting algorithms are not guaranteed to converge to
anything in the nonlinear case

* Model-based RL

* Model minimizes error of fit
* This will converge

* No guarantee that better model = better policy

* Policy gradient

* The only one that actually performs gradient descent (ascent) on the true
objective

Comparison: assumptions

* Common assumption #1: full observability

e Generally assumed by value function fitting
methods

e Can be mitigated by adding recurrence

* Common assumption #2: episodic learning
e Often assumed by pure policy gradient methods
* Assumed by some model-based RL methods

* Common assumption #3: continuity or
smoothness

* Assumed by some continuous value function
learning methods

e Often assumed by some model-based RL
methods

Examples of specific algorithms

* Value function fitting methods
* Q-learning, DQN
* Temporal difference learning
* Fitted value iteration

* Policy gradient methods We’ll learn about

* REINFORCE :
» Natural policy gradient most of these in the
* Trust region policy optimization next few weeks!

* Actor-critic algorithms
* Asynchronous advantage actor critic (A3C)

* Model-based RL algorithms
* Dyna
e Guided policy search

Example 1: Atari games with Q-functions

* Playing Atari with deep
reinforcement learning,
Mnih et al. ‘13

* Q-learning with
convolutional neural
networks

Example 2: robots and model-based RL

* End-to-end training of
deep visuomotor
policies, L.* , Finn* '16

* Guided policy search
(model-based RL) for
image-based robotic
manipulation

Various Experiments
Including the policy input

Example 3: walking with policy gradients

lteration O

* High-dimensional
continuous control with
generalized advantage
estimation, Schulman et
al. ‘16

* Trust region policy
optimization with value
function approximation

Next time: model-free RL methods

* Week 3: policy gradient algorithms
* You’'ll need these for Homework 2!

* Week 4: actor-critic and value function learning

* Week 5: advances value function algorithms for Q-learning
* You’ll need these for Homework 3!

* Week 6: model-based reinforcement learning

