Optimal Control and
Planning

CS 294-112: Deep Reinforcement Learning

Sergey Levine

Class Notes

1. Homework 2 is due today, at 11:59 pm

2. Homework 3 comes out tonight
 Start early, this one will take a bit longer!

Today’s Lecture

Introduction to model-based reinforcement learning

What if we know the dynamics? How can we make decisions?
Stochastic optimization methods

Monte Carlo tree search (MCTS)

Trajectory optimization

A S

 Goals:

* Understand how we can perform planning with known dynamics models in
discrete and continuous spaces

Recap: the reinforcement learning objective

A
\ A\))
\ \ss \ \\ \)
\ \ \ \27 \ \ \
y \ \ \ \i3 \ A% \\ \13 \
\
-l 3 ‘_\ > i
3 =Xl N -f(ls 3: - feo dense’| |dens g =] =)
N \ 3 2
b \ 384 \\ 384 \ 256
\\ 256 Max -
1 Max pooling 40% 4096
I k /

p(s's,a)
_J

T
po(s1 ..., 87, 87) = pls: H (a¢|se)p(ses1lse, ar)

7o (T)

0* = arg max Eorpe (1) [Zt: r(st, at)]

Recap: model-free reinforcement learning

\ \ s

27 \ \

\ \

\ \ \\J \\ \13 \\ \13 \

o C s I -

by y % |3 A - Tl 3 -=% h3 dense’| |dens » a #
\ N \ \\ N - \
\ \ 384 384 N\ 256

Max
256 3
A Max Dpooling 4096 4096
pooling /

(s'|s,a)
_J

T
pe(sl,al,---,ST,aT = p(s1 H atlstw

assume this is unknown
don’t even attempt to learn it

7o (T)

0* = arg max Eorpe (1) [Z r(st, at)]
t

What if we knew the transition dynamics?

e Often we do know the dynamics
1. Games (e.g., Go)
2. Easily modeled systems (e.g., navigating a car)
3. Simulated environments (e.g., simulated robots, video games)

e Often we can learn the dynamics
1. System identification — fit unknown parameters of a known model
2. Learning —fit a general-purpose model to observed transition data

Does knowing the dynamics make things easier?

Often, yes!

Model-based reinforcement learning

1. Model-based reinforcement learning: learn the transition dynamics,
then figure out how to choose actions

2. Today: how can we make decisions if we know the dynamics?
a. How can we choose actions under perfect knowledge of the system dynamics?
b. Optimal control, trajectory optimization, planning

3. Next week: how can we learn unknown dynamics?

How can we then also learn policies? (e.g. by imitating optimal control)

he objective

ooooooo

min IZp: (satan)byttigertaf (s —1ag)_1)

ai,...,ar

he deterministic case

T

ai,...,ar = argai‘rr.l.z.u;T Zr(st,at) s.t. arr1 = f(sg, a)

t=1

he stochastic open-loop case

why is this suboptimal?

Aside: terminology

what is this “loop”?

closed-loop open-loop

only sentatt=1,
then it’s one-way!

he stochastic closed-loop case

form of 7?7

\
neural net %\0\0'5

time-varying linear

K:s; + k; \O(:b\

(more on this later)

1
(_FM
-%
Ve
w
~
b}
—~
SN
1

T =argmax F ;)

Stochastic optimization

abstract away optimal control /planning:

ai,...,ar =arg max J(a,...,ar) A =argmax J(A)

Aal,..., aT ‘ ; A
|

don’t care what this is

simplest method: guess & check “random shooting method”

1. pick Aq,..., Ay from some distribution (e.g., uniform)

2. choose A; based on arg max; J(A;)

Cross-entropy method (CEM)
1. pick Aq,... ,Ae.g., uniform)

2. choose A; based on arg max; J(A;) can we do better?

J(A) typically use
“ ~ Gaussian
/ distribution
> A
cross-entropy method with continuous-valued inputs: sec alSO: CMA-ES
1. sample Aq,..., Ay from p(A) (Sort of like CEM
2. evaluate J(Aq),...,J(AN) with mOmentum)
3. pick the elites A;,, ..., A;,, with the highest value, where M < N
4. refit p(A) to the elites A;,,..., Ay,

What’s the upside?

1. Very fast if parallelized
2. Extremely simple

What's the problem?

1. Very harsh dimensionality limit
2. Only open-loop planning

Discrete case: Monte Carlo tree search (MCTS)

discrete planning as a search problem

51
Q
% %
Q)\/ N /
S9 52

Q o S o

< <
4 N 7 N
Y, e Y, v
53 S3 S3 S3

© o B e e rlclelelels | E
~~ 0] (o] [¢] [¢] (] (o] [®] :

Discrete case: Monte Carlo tree search (MCTS)

how to approximate value without full tree?

Sq
EA%)
Q
= 7 4
v N, N
7 0 4
x|
e S9 52
Y \e Y N\&
>+0
[3+0] 4 N\ W/ N\
Y, 4 N g
0]
R S3 S3 S3 S3
St at ~—
= > > >
w A w A
s Y Y -
e.g., random policy = S S =
= = = =

Discrete case: Monte Carlo tree search (MCTS)

can’t search all paths — where to search first?

+10 +15

T(at|st)

© o B e e rlclelelels | E
~~ 0] (o] [¢] [¢] (] (o] [®] :

intuition: choose nodes with best reward, but also prefer rarely visited nodes

Discrete case: Monte Carlo tree search (MCTS)

generic MCT'S sketch
1. find a leaf s; using TreePolicy(s1)

2. evaluate the leaf using DefaultPolicy(s;)

3. update all values in tree between s; and s;

take best action from s

UCT TreePolicy(s;)
if s; not fully expanded, choose new a;

else choose child with best Score(s;y1)

Q(s;) 21n N (sy_1)
N(so) 20\/ N(se)

Score(s;) =

e

Y

NS
Q: k= Q=16
N: 83 N=1

Additional reading

1. Browne, Powley, Whitehouse, Lucas, Cowling, Rohlfshagen, Tavener,
Perez, Samothrakis, Colton. (2012). A Survey of Monte Carlo Tree
Search Methods.

e Survey of MCTS methods and basic summary.

Case study: imitation learning from MCTS

Deep Learning for Real-Time Atari Game Play
Using Offline Monte-Carlo Tree Search Planning frame: 3

“submarine”

o
N
0
N

Xiaoxiao Guo Satinder Singh
Computer Science and Eng. Computer Science and Eng.
University of Michigan University of Michigan “enemy+diver”
guoxiao@umich.edu baveja@umich.edu
Honglak Lee Richard Lewis Xiaoshi Wang
Computer Science and Eng. Department of Psychology Computer Science and Eng.
University of Michigan University of Michigan University of Michigan

honglak@umich.edu rickl@umich.edu xiaoshiw@umich.edu

Case study: imitation learning from MCTS

DAgger

train mg(us|o;) from human data D = {01, uy,...,0n,un}
run 7g(us|o;) to get dataset D, = {o1,...,0n}

A’k dsernaticias lidredtAteswitDactising BiCTS

. Aggregate: D+ D UD,

s oW

Why train a policy?
* In this case, MCTS is too slow for real-time play

e Other reasons — perception, generalization, etc.: more on this later

Break

Can we use derivatives?

T
min Zc(xt,ut) s.t. Xy = f(Xp_1,U4_1)

ui,...,ur
t=1

min c¢(x1,u1) + c(f(xy,uy),u2) + - +c(f(f(...)...),up)

ui,..., U

usual story: differentiate via backpropagation and optimize!

df df dc dc
dXt ’ dllt ’ ClXt ’ dllt

need

2nd

in practice, it really helps to use a order method!

Shooting methods vs collocation

shooting method: optimize over actions only

min c(xq,uy) + c(f(x1,uy),us) +---+c(f(f(...)...),ur)

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints
T

min Zc(xt,ut) s.t. xp = f(Xp_1,Wp_1)

ul,...,.u7r,X1,...,. X717
t=1

/V\/

Linear case: LQR

ui,...,ur

Linear case: LQR x7 (unknown)

min c(xy,uy) + c(f(x1,uy),us) +---+c(f(f(...)...),ur)

ul,...,ur (' |
1| x g X X g | h
c(xt,ut):—[t] Ct[t]_i_[t] c, only term that
2 | W u; U depends on ur
Xt
f(Xtaut)_Ft[] + 1
Uy
|: CXT XT CXT ur]
CT —) 3
Base case: solve for ur only Curxr Curur
Cxr
1 XT g XT XT 4 T = [C]
VurQxXr,ur) =Cyu. x..X7 + Cur - +c€ =0 _
rQ(x7, ur) Xy L T,ur =L + KT:_CU;,UTCuT,XT
ur = _C;;,uT (Cup xrXT + Cuy) ur = Krxr + kr kpr = —C;;,uTcuT

Linear case: LQR

ur = Kpxp + kp Kr=-C.' ,..Curxr kr =-C_!}

C
ur,ur -u

1[xp 17" X xr 1
Q(XTaU—T) = const + 5 [uT } Cr [g] + [r] Ct
Since uyp is fully determined by x7, we can eliminate it via substitution!

V(XT):consHl[T rcrp[xT]+[T]TCT

2 | Krxr + kr Krxr + kp Krxr + kp
1 T 1 T 1 Tyx-T 1 TyoT
V(XT) :§XTCXT,XTXT + §XTCXT,UTKTXT =+ §XTKTCUT:XTXT T §XTKTCUT711TKTXT+
1

TyrT T T TyrT

1
V(XT) = const + igiTXT -+ X%VT Vo = CXT,XT —+ CXT,UTKT + K%CuT,xT —+ K%CUT,UT K

VT = Cxy T CXT,UT kT + K%CUT - KgcuT,UT kT

Linear case: LQR

Solve for uy_1 in terms of x7_1

ur_1 affects xp!

XT_
f(XT—LUT—l) =x7 =Fr_1 { uT !] + 174
T-1

| T) T
Q(xr_1,ur_1) = const—|—§ { *T-1] Cr_4q [*T-1]-I—[ﬁz_i] cr_1+V(f(xp_1,ur—_1))
)

{ 1 \

V (x7) = const + §X§VTXT + X%VT

T T T
Ll xp_y T XT-1 XT—-1 T XT—-1 T

V(x7) = const + — Fr VrFr_ + F+_ Vpfr_ 1+ F7_ v

(x7) 2[] T1TTl[uT_1 ar raVrfr—i+| T-1

guadratic linear linear

Linear case: LQR

T T
L xp_q XT-1] [XT-1]
XT_1,U7_1) = const+— Cr_ + cr1+VI(f(xr—1,ur—
Qxr—1,ur_1) LAt] rn | X |4 Wt | et V(e uro)

T T T
Ll xpy T XT-1 XT—-1 T XT—-1 T
V(xr) = const + — F+_ VyoF_ + F+7 Vot 1 + F7_ v,
(x7) 2 [ur—1] T PR [ur-—1 ur—1 -1 T ur—_1 =1

guadratic linear linear

T T
L x4 XT—1 XT—1
X7_1,U7—1) = const + — _ + _
Q(x7—1,ur_1) 2[11T—1] Qr 1[. wp_, | -1

Qr_1 =Cr_1 +F4_ ViFr_,
qr-1 =cr_1 +FL_ Vofr i + FL_ vy

T
VuT_lQ(XT—17 uT—l) — QUT_l,XT_le—l _|_ QUT_l,uT_luT—l + quT—l — 0

_ —1 _ —
ur_1 = Kyr_1x7_1 +kp_ Kro1=-"Qu, up Qur_i xr_s kr1=-"Qu,_,up_Qur_,

Linear case: LQR

: e e = Kigoxioo + koo
Backward recursion o T e

fort =T to 1:
Q;=C,+F/V,F,
q: = Ct + Ft Vit + F,;ngt+1

1[x 1" X x, 17
Q(Xt,ut):const+§[t} Qt[t]+[t} @

u; < arg min Q(xs,uy) = Kyxy + ky Forward recursion

we know x1!

Kt — ut,thut;Xt fOI' t=1to 1"
ki = — ,:t,utqm u, = Kyxy + kg
Vt — th,xt + th,uth —I_ KgQut,xt + KgQut,uth Xt—l—]. — f(Xt7 ut)

Vt — q.Xt —I_ th,utkt _|_ K?Qut _|_ K?Qut,utkt

1
V(x¢) = const + §x'{Vtxt + x!'vy

Some useful definitions

Backward recursion

fort =1 to 1: total cost from now until end if we take u; from state x;

Qt p— Ct + Ffvt_{_lFt /
q: = C¢ + FtTVt+1ft + F;'ngtJrl

1| x o X X o
aoom-em3[3 a3 (2]

w; < argmin Q(x¢, uy) = Kyxy + ky

Kt - = l._ltl,‘l_thutgxt

k; = —Qy 4, du,

Vi = Qu,x, + Qo Kt + K Quy x, + Ki Quyu, Ko
Vi =dx, + Qx, u ke + K{ Qu, + K/ Qu, u. ke

total cost from now until end from state x;

1
_ P T |
V(x¢) = const + 5 Xt Vix: + X; vy V(Xt) IHQ(Xt,ut)
U¢

Stochastic dynamics

Xt+1 ™~ p(Xt+1’Xta llt)

t

p(Xt—i—l‘Xtaut) =N (Ft [lxlt] —|‘ft72t)

Solution: choose actions according to u; = K;x; + k;
x; ~ p(X¢), no longer deterministic, but p(x;) is Gaussian

no change to algorithm! can ignore ¥; due to symmetry of Gaussians
(checking this is left as an exercise; hint: the expectation of a quadratic under
a Gaussian has an analytic solution)

Nonlinear case: DDP/iterative LQR

Linear-quadratic assumptions:

f(XtaUt)—Ftlit]—Fft
!
1| x T X X r
! [/
SOt R I I R B I

Can we approrimate a nonlinear system as a linear-quadratic system?

f(Xt?ut) ~ f(),\(ta ﬁt) + th,utf(),\(h ﬁt) [T]

Ut—ﬁt

. . 2T
A . X; — X 1
c(x¢, up) & C(Xtaut)+VXt,UtC(Xtaut) [uz o ﬁi]"‘5 [.] v?{t,ut

Nonlinear case: DDP/iterative LQR

f(Xt?ut) ~ f(),\(ta ﬁt) + th,utf(),\(h ﬁt) [T]

Ut—ﬁt

~ T ~
A A A A X _X 1 X _X A A X _X
c(Xe,ug) ~ (Xe, W)+ Vi, u, ¢(Xe, Uy) [b]+§ [b] Vi, u ¢k, 0r) [b]

ut_ﬁt

. %4) 1] 0%, 17 o [ox 5x; 1"
f(&Xt, 51115) = Ft 51175 C(5Xt, (Sllt) = 5 (51115 Ct 5ut —+ 51175 Ct
o - =
vxt,ut f(),\{t; ﬁt) Vit,utC(f{t, ﬁt) th,utc()?:t, u

(SXt — Xt — }A(t

A Now we can run LQR with dynamics f, cost ¢, state dx;, and action duy
5111; = U — Uy

Nonlinear case: DDP/iterative LQR

Iterative LQR (simplified pseudocode)

until convergence:
Ft — vxt,ut f(f(ta ﬁt)
Ct = th,utc(fct, ﬁt)
Ct = vit,utc(f(ta ﬁt)
Run LQR backward pass on state 0x; = Xx; — X; and action du; = u; — Uy

Run forward pass with real nonlinear dynamics and u; = K;(x; —x;)+k;+ 1,

Update x; and 0; based on states and actions in forward pass

Nonlinear case: DDP/iterative LQR

Why does this work?

Compare to Newton’s method for computing miny g(x):

until convergence:
g = Vxg(X)
H = V3g(x)
X 4— arg min %(X ~3)THx-%) + gl (x— %)

X

[terative LQR (iLQR) is the same idea: locally approximate a complex nonlinear
function via Taylor expansion

In fact, iLQR is an approximation of Newton’s method for solving

min c¢(x1,u1) +c(f(x1,uy),u2) + - +c(f(f(...)...),up)

ui,...,ur

Nonlinear case: DDP/iterative LQR

In fact, iLQR is an approximation of Newton’s method for solving

min c(xq,uy) + c(f(x1,uy),us) +---+c(f(f(...)...),ur)

ui,...,ur

To get Newton’s method, need to use second order dynamics approximation:

f(xe,up) = f(Xe, 0g)+ Vi, u, f(Xe, 0g) [o]Jr% (v’z‘t’“tf(it’ﬁt)- [o]) [s]

5ut 511,5 61115

differential dynamic programming (DDP)

Nonlinear case: DDP/iterative LQR

1
X 4— arg min i(x —3)TH(x - %)+ g’ (x — %)

X

why is this a bad idea?

until convergence:

Ft — vxt,ut f()/\(tj ﬁt)

c; = Vx, u, (X, y) Seale}-l over « |
until improvement achieved
2
C:=V

Xt,U¢

C(j\(ta ﬁt)
Run LQR backward pass on state dx; = x; — X; and action ou; = u; — Uy
Run forward pass with u; = K;(x; — X;) + ki,

Update x; and 0; based on states and actions in forward pass

Additional reading

1. Mayne, Jacobson. (1970). Differential dynamic programming.
* Original differential dynamic programming algorithm.

2. Tassa, Erez, Todorov. (2012). Synthesis and Stabilization of Complex
Behaviors through Online Trajectory Optimization.

* Practical guide for implementing non-linear iterative LQR.

3. Levine, Abbeel. (2014). Learning Neural Network Policies with Guided
Policy Search under Unknown Dynamics.

* Probabilistic formulation and trust region alternative to deterministic line search.

Case study: nonlinear model-predictive control

Synthesis and Stabilization of Complex Behaviors through
Online Trajectory Optimization

Yuval Tassa, Tom Erez and Emanuel Todorov
University of Washington

every time step:
observe the state x;

_ L t+T
use iILQR to plan uy, ..., ur to minimize Zt,_'_:t c(xy,uyr)

execute action uy, discard wsyq, ..., Wyt

Synthests of Complex Behaviors
with
Online Trajectory Optimization

Yuval Tassa, Tom Erez & Emo Todorov

IEEE International Conference

on Intelligent Robots and Systems
20012

What’s wrong with known dynamics?

Next time: learning the dynamics model

