AutoDiff & TensorFlow

Deep RL Section 1/27/17
Chelsea Finn
Outline

1. Backpropagation and SGD
2. Automatic differentiation
3. Deep learning libraries, pros & cons
4. TensorFlow basics (focus)

— ask questions —
Backpropagation

\[
\begin{align*}
 h_1 &= \sigma(W_1 x) \\
 h_2 &= \sigma(W_2 h_1) \\
 y &= W_3 h_2
\end{align*}
\]

\[
\frac{\partial y}{\partial W_1} = \frac{\partial y}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial W_1}
\]

\[
\frac{\partial y}{\partial W_2} = \frac{\partial y}{\partial h_2} \frac{\partial h_2}{\partial W_3}
\]

picture from Stanford’s CS231n
What is automatic differentiation?

1. You specify the computation graph by composing predefined functions
2. The program computes derivatives for you

Two models: forward mode autodiff & reverse-mode autodiff
Deep Learning Libraries

Most popular: TensorFlow, Caffe, Theano, Torch
Others: mxnet (Amazon & others), CNTK (Microsoft), chainer (PfNet), neon (Nervana)

<table>
<thead>
<tr>
<th>Library</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>TensorFlow</td>
<td>+ documentation, widely-used</td>
<td>- often somewhat slower</td>
</tr>
<tr>
<td></td>
<td>+ very flexible, TensorBoard (viz)</td>
<td></td>
</tr>
<tr>
<td>Caffe</td>
<td>+ simple for standard nets, often fast</td>
<td>- lacking documentation, less flexible</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theano</td>
<td>+ widely-used, very flexible</td>
<td>- less stable, slow compile time</td>
</tr>
<tr>
<td>(U of Montreal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torch</td>
<td>+ well-supported, among the fastest</td>
<td>- lua interface*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

until last week
TensorFlow: Installation

- supports python 2.7 and 3.3+
- CPU vs. GPU version, GPU requires CUDA and cuDNN
- v0.11 currently more stable than v0.12
- “pip install tensorflow” coming soon
- well-supported on Linux and Mac
TensorFlow: Main Idea

- Variables, Tensors, Ops
- Build symbolic computation graph in python
 - numpy-like syntax
 - **example operations**: log, matmul, conv2d, fft, sum, relu, sigmoid, dropout, concat, split, resize_bilinear, crop, random_saturation, batch_norm, softmax
- Execute graph or part of graph with session.run()
 - Usually call session.run() once for every training iteration
- Only run parts of graph as necessary
TensorFlow: Input

- **Placeholders**: entry point of graph
 - enter data with `feed_dict`
- **Built-in Data Readers**: `TextLineReader`, `WholeFileReader`, `TFRecordReader` (protobuf)

Taking data in and out of TensorFlow tends to slow.
TensorFlow: Example

```python
import tensorflow as tf

print 'Constructing Graph'
a = tf.placeholder("float")
b = tf.placeholder("float")
c = tf.get_variable('my_var', shape=(1), initializer=tf.constant_initializer(5))
y = tf.mul(a, tf.log(b)) + c

print 'Creating Session'
sess = tf.Session()

print 'Initializing Variables'
sess.run(tf.initialize_all_variables())

print 'Running Graph'
print sess.run(y, feed_dict={a: 3, b: 3})
```
TensorFlow: Training

- `tf.train.Optimizer` (e.g. Momentum, Adagrad, Adam)
- feed in a tensor to be minimized
TensorFlow: Logging

- **Saver** object
 - for saving and restoring weights
 - define how many checkpoints to keep
- **SummaryWriter** - save summary of performance
 - `tf.scalar_summary()`, `tf.image_summary()`
- **TensorBoard** - automatically loads summaries and displays stats in browser, can easily run over ssh
TensorBoard
TensorFlow: Misc

- scoping
- reusing variables
- Advanced numpy-like array slicing not always supported
- Debugging:
 - pull values of tensors out of the graph
 - look at shapes (tensor.get_shape())
 - use InteractiveSession() to experiment in a shell
TensorFlow: Docs

- The docs are your friend!
 tensorflow.org/api_docs/python/
 [Useful for looking up graph ops]

- Source code also a useful reference
 github.com/tensorflow
TensorFlow: Add-ons / Wrappers

- **keras** - frontend wrapper, supports both Theano and TF backend, to become official TF fronted
- **tf-slim** - lightweight wrapper, reduce amount of code, works seamlessly with TF
Questions?