
APPENDIX

A. Robotic Experiment Details

All of the robotic experiments were conducted on a PR2
robot. The robot was controlled at 20 Hz via direct effort
control,2 and camera images were recorded using the RGB
camera on a PrimeSense Carmine sensor. The images were
downsamples to 240 × 240. The learned policies controlled
one 7 DoF arm of the robot. The camera was kept fixed in
each experiment. Each episode was 5 seconds in length. For
each task, the cost function required reaching the goal state,
defined both by visual features and gripper pose. Similar to
previous work, the cost was given by the following equation:

`(xt,ut) = w`2d
2
t + wlog log(d2t + α) + wu‖ut‖2,

where dt is the distance between three points in the space of
the end-effector and learned feature points in 2D and their
respective target positions3, and the weights are set to w`2 =
10−3, wlog = 1.0, and wu = 10−2. The quadratic term in
the cost encourages moving towards the target when it is far,
while the logarithm term encourages reaching the target state
precisely, as discussed in prior work [8]. The rice scoop task
used two target states, in sequence, with half of the episode
(2.5 seconds) devoted to each target. For each of the tasks,
the objects were reset to their starting positions manually
between trials during training. We discuss the particular setup
for each experiment below:

a) Lego block: The lego block task required the robot to
push a lego block 30 cm to the left of its initial position. For
this task, we measured and reported the distance between the
top corner of the goal block position to the nearest corner of
the lego block at the end of the trial. In some of the baseline
evaluations, the lego block was flipped over, and the nearest
corner was still used to measure distance to the goal.

b) Bag transfer: The bag transfer task required the
robot to place a white bag into a bowl, using a spoon. At
the start of each trial, the robot was grasping the spoon with
the bag in the spoon. A trial was considered successful if
the bag was inside the bowl and did not extend outside of
the bowl. In practice, the bag was very clearly entirely in the
bowl, or entirely outside of the bowl during all evaluations.

c) Rice scoop: The rice scooping task required the
robot to use a spatula to lift a small bag of rice off of a
table and place it in a bowl. At the start of each trial, the
spatula was in the grasp of the robot gripper, and the bag of
rice was on the table, about 3 cm from the bowl. As with
the bag transfer task, a trial was considered successful if the
bag of rice was inside the bowl and did not extend outside of
the bowl. In practice, the bag was very clearly in the bowl,
or outside of the bowl during all evaluations.

d) Loop hook: The loop hook task required the robot
to place a loop of rope onto a metal hook attached to a

2The PR2 robot does not provide for closed loop torque control, but
instead supports an effort control interface that directly sets feedforward
motor voltages. In practice, these voltages are roughly proportional to
feedforward torques, but are also affected by friction and damping.

3Three points fully define the pose of the end-effector.

scale, for different positions of the hook. At training time,
the scale was placed at four different starting positions along
a metal pole that were equally spaced across 24 cm of the
pole. The test positions were the three midpoints between the
four training positions. A trial was considered successful if,
upon releasing the rope, the loop of rope would hang from
the hook. In practice, the failed trials using our approach
were often off by only 1-2 mm, whereas the controller with
no vision was typically off by several centimeters.

B. Neural Network Architectures for Prior Work Methods

We compare our network with two common neural net-
work architectures. The first baseline architecture is the
one used by Lange et al. [1]. The network is composed
of 8 encoder layers and 8 decoder layers. To match the
original architecture as closely as possible, we converted our
240×240 RGB images into 60×60 grayscale images before
passing them through the network. The encoder starts with
3 convolution layers with filter size 7 × 7, where the last
convolution layer has stride 2. The last convolution layer
is followed by 6 fully connected layers, the size of which
are 288, 144, 72, 36, 18 and 10 respectively. The last fully
connected layer forms the bottleneck of the autoencoder. We
chose 10 as the dimension of the bottleneck, since the system
has roughly 10 degrees of freedom. The decoder consists of 6
mirrored fully connected layers followed by 3 deconvolution
layers, finally reconstructing the down sampled 60 × 60
image. We used ReLU nonlinearities between each layer.
Following [1], we pre-train each pair of the encoder-decoder
layers for 4000 iterations. Then, we perform fine tuning on
the entire network until the validation error plateaus.

We also experimented with a more widely adopted con-
volutional architecture. The 240× 240× 3 image is directly
passed to the network. This network starts with 3 convolu-
tional layers. As in our network architecture, conv1 consists
of 64 7×7 filters with stride 2, conv2 has 32 5×5 filters with
stride 1, and conv3 has 16 5 × 5 filters with stride 1, each
followed by batch normalization and ReLU nonlinearities.
Unlike our architecture, this baseline architecture performs
max-pooling after each convolution layer in order to decrease
the dimensionality of the feature maps. The convolution lay-
ers are followed by two fully connected layers with 512 and
32 units respectively, the last of which forms the bottleneck
of the network. These layers together form the encoder, and
a mirroring architecture, consisting of fully connected layers
and deconvolution layers, forms the decoder. We initialize
the first convolution layer with weights trained on ImageNet,
and train the network until validation error plateaus.


