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Abstract— Manipulation of deformable objects is a widely
applicable but challenging task in robotics. One promising non-
parametric approach for this problem is trajectory transfer, in
which a non-rigid registration is computed between the starting
scene of the demonstration and the scene at test time. This
registration is extrapolated to find a function from R3 to R3,
which is then used to warp the demonstrated robot trajectory
to generate a proposed trajectory to execute in the test scene. In
prior work [1] [2], only depth information from the scenes has
been used to compute this warp function. This approach ignores
appearance information, but there are situations in which using
both shape and appearance information is necessary for finding
high quality non-rigid warp functions.

In this paper, we describe an approach to learn relevant
appearance information about deformable objects using deep
learning, and use this additional information to improve the
quality of non-rigid registration between demonstration and
test scenes. Our method better registers areas of interest on
deformable objects that are crucial for manipulation, such as
rope crossings and towel corners and edges. We experimentally
validate our approach in both simulation and in the real world,
and show that the utilization of appearance information leads
to a significant improvement in both selecting the best matching
demonstration scene for a given test scene, and finding a high
quality non-rigid registration between those two scenes.

I. INTRODUCTION

In robotic manipulation of deformable objects, a key chal-
lenge is operating in high-dimensional, continuous state and
action spaces. Accounting for the complicated dynamics of
deformable objects is also difficult. Despite these challenges,
recent work has shown promising results in manipulating
deformable objects through learning from demonstration
(LfD). In LfD, the robot generalizes from human demon-
strations of a given task in order to perform that task
autonomously in new scenes. One approach to LfD uses
trajectory transfer [1] [2], which consists of first selecting
a demonstration to apply and then finding a non-rigid warp
from the demonstration scene to the test scene. This warp is
then applied to the human-demonstrated gripper trajectory, to
generate a proposed trajectory to execute in the test scene.

A state-of-the-art approach to finding this non-rigid warp
in trajectory transfer uses Thin Plate Spline Robust Point
Matching (TPS-RPM), which takes in each scene in the form
of 3D point clouds. TPS-RPM iteratively solves for (i) soft
point correspondences between the source and target points,
and (ii) a warp function that balances non-rigidness of the
warp with effective matching of corresponding target and
warped source points [3]. Regularizing the warp to be as
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Fig. 1: Objects often have regions that can be clearly distinguished
with appearance information, but not with only shape information.
Our approach uses learned appearance information to encourage
better matching of crucial points between source and target scenes,
which produces a higher quality warp function from source to
target points, and thus more reliably successful execution. We apply
our approach to two challenging deformable object manipulation
tasks: tying knots and folding towels. Our approach enables the
first successful application of LfD to perform towel folding when
starting from a fully crumpled state.

rigid as possible increases the likelihood of the transferred
trajectory succeeding in the test scene.

However, this approach only considers the locations of the
source and target points; it has no mechanism of ensuring
that, for example, towel corners and edges in the source scene
are registered to those in the target scene, and rope crossings
and endpoints in the source are registered to those in the
target. This additional information is necessary for generating
high-quality warps in certain situations, and can be captured
by local appearance descriptors.

The contributions of this paper are: (i) An approach
to learning feature descriptors invariant to small non-rigid
transformations, and (ii) A method of using these descriptors
to incorporate appearance of deformable objects into non-
rigid registration. We apply our approach to two instances
of deformable object manipulation: tying overhand knots in
ropes and folding towels (Figure 1). Our experiments show
that, in general, integrating appearance information into the
TPS-RPM algorithm produces higher quality warps from
demonstration scenes to test scenes, which improves demon-
stration selection and makes the transferred trajectory more
likely to succeed in the test scene. Our approach enables the
first successful application of LfD to perform towel folding
starting from a fully crumpled state, which can be seen at
http://rll.berkeley.edu/iros2015ap/.

II. RELATED WORK

A. Deformable Object Manipulation

Robotic manipulation of deformable objects has been
studied in various contexts, ranging from surgery to industrial
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environments. An extensive survey is available in [4].
One line of previous work uses motion planning tech-

niques for deformable object manipulation. These methods
apply traditional planning algorithms such as Probabilistic
Roadmap [5] [6] or Rapidly-exploring Random Trees [7]
to compute a set of feasible motions for manipulating an
object. Such techniques have been successfully applied to
a variety of manipulation tasks, including knot tying [5]
and needle insertion [8]. However, these approaches require
an explicit deformation model for the object, and rely on
physical simulation during planning. Recent works [9] [10]
extend the planning framework to not rely on modeling or
simulation of the objects, but these approaches cannot handle
complicated tasks such as knot tying or cloth folding.

Towel folding from a fully crumpled state has been accom-
plished in the past through executing a series of manually-
defined trajectories based on the locations of detected grasp
points [11]. However, this approach requires manually defin-
ing trajectories and a state machine of transitions between
states of the towel, which is expensive and limits the failure
states that the robot can recover efficiently from.

Another line of work for deformable object manipulation
uses human demonstrations to teach robots how to perform
complicated tasks, without requiring modeling or simulation
of the object. In the so-called learning from demonstration
(LfD) paradigm [12], a human expert demonstrates the task
one or more times, and a learning algorithm generalizes
these demonstrations so that the robot can perform the
tasks autonomously under new, yet similar, situations. This
approach has shown promising results for a range of robotic
manipulation tasks involving deformable objects, including
pizza dough flattening [13], pancake flipping [14], knot
tying [15] [16] [17], and cloth folding [2] [18]. Prior ap-
plications of LfD to cloth folding require that the cloth
starts out in a flat spread-out state, whereas our approach
enables folding towels that start from fully crumpled states,
by leveraging appearance information.

B. Local Appearance Descriptors

Defining or learning local appearance descriptors is a well-
studied problem that is applicable to many tasks. In the
context of non-rigid registration, one approach is labeling
corresponding landmarks in both the source and target im-
ages, and using those fixed correspondences to calculate the
registration [19] [20]. These landmarks can be determined
manually [19], semi-automatically [20], or automatically.
SIFT Flow [21] is a method for establishing correspondences
across two distinct scenes; it produces a flow field by
matching densely computed scale-invariant feature transform
(SIFT) descriptors [22].

Previous work on hand-engineered local appearance de-
scriptors often focuses on making these descriptors invariant
with respect to viewpoint changes (i.e., rigid transformations)
or illumination [23]. Examples include shape context [24],
SIFT [22], histogram of oriented gradients (HOG) [25], and
DAISY [26], which have proven to be effective in a variety
of applications. By contrast, for our task, we seek descriptors

that are also invariant to small non-rigid transformations of
the object. In our work, rather than hand-engineering new
local appearance descriptors for deformable objects, we will
follow a deep learning approach. We will compare these
deep-learned local appearance descriptors against existing
hand-engineered descriptors.

C. Deep Learning

Recently deep learning methods, particularly in the form
of Convolutional Neural Networks (CNNs), have emerged as
an alternative to hand-engineered features, and have achieved
impressive results in a variety of computer vision tasks.
In particular, Krizhevsky et al. [27] achieved breakthrough
results on the ImageNet classification task [28]. Girshick et
al. [29] developed R-CNN, which achieved state-of-the-art
performance on the task of object detection on PASCAL
VOC [30]. Importantly, they showed substantial improve-
ment by first using a pre-trained network on the large
ILSVRC12 classification dataset and then fine-tuning on the
smaller PASCAL VOC object detection dataset.

Most previous work falls within the contexts of clas-
sification [27] and detection [29]. However, neither is
sufficient for complex manipulation tasks, especially those
involving deformable objects. For such tasks, it is important
to accurately determine the configuration of each deformable
component of the object. Recent work has applied deep
learning towards the classification of deformable objects, but
not their manipulation [31] [32].

III. BACKGROUND

A. Trajectory Transfer through Non-Rigid Registration

(i) Non-Rigid Registration with Known Correspondences
Non-rigid registration from a source to a target scene

computes a warping function f̂ that minimizes both the
registration error and a regularization term. Given a set of
point correspondences (xi,yi) between the two scenes and
a regularizer r, the goal is to find the warping function
f̂ : R3 → R3 such that:

f̂ = argmin
f

∑
i

||f(xi)− yi||2 + λr(f) (1)

where λ is a hyper-parameter that trades off between the
registration error and regularization of f .

We set r(f) to be the Thin Plate Spline (TPS) regular-
izer [33] [34], a commonly-used effective regularizer that
calculates the bending cost of f :

r(f) = ||f ||2TPS =

∫
dx||D2f(x)||2Frob , (2)

where D2f(x) is the Hessian of f at x, and || · ||Frob denotes
the Frobenius norm. With this choice of r(f), the solution
to the non-rigid registration problem in Equation 1 can be
expressed as an affine transformation plus a weighted sum
of basis functions σ(·) around the source points xi. More
concretely, for x ∈ R3, f̂ has the form

f̂(x) =
∑
i

aiσ(x− xi) + Bx + c , (3)



where σ(x−xi) = −||x−xi||2, ai ∈ R3, B ∈ R3x3, and c ∈
R3. In addition, ai must satisfy

∑
i a

d
i x
d
i = 0 and

∑
i a

d
i = 0

for all dimensions d ∈ {1, 2, 3}. Using this known structure
of f , Equation 1 can be efficiently solved analytically [34].

(ii) Non-Rigid Registration with Unknown Correspondences
When point correspondences are unknown, the Thin Plate

Spline Robust Point Matching (TPS-RPM) algorithm [3]
solves the problem by iteratively (i) estimating soft cor-
respondences between the point clouds of two scenes and
(ii) fitting the optimal TPS transformation f̂ based on these
estimated scene correspondences. This is equivalent to coor-
dinate descent on the following joint optimization problem,
where M is the correspondence matrix with mij ∈ [0, 1]
indicating the degree of correspondence between point xi
and yj :

minimize
f ,M

E(f ,M;T, ζ) + λ||f ||2TPS

subject to
N+1∑
i=1

mij = 1,
N ′+1∑
j=1

mij = 1,mij ≥ 0 ,
(4)

E(f ,M;T, ζ) =

N∑
i=1

N ′∑
j=1

mij ||f(xi)− yj ||22

+ T

N∑
i=1

N ′∑
j=1

mij logmij − ζ
N∑
i=1

N ′∑
j=1

mij

mi(N ′+1) represents the likelihood of xi being an outlier,
and m(N+1)j represents the same for yj . As before, λ
controls the tradeoff between how well f minimizes the
energy function E and the bending cost of f . The temperature
T controls how soft the correspondences are, with a low
temperature favoring a harder mij . The parameter ζ controls
the preference for matching points to non-outliers.

This objective is non-convex, so the solution obtained
from coordinate descent is only guaranteed to be locally
optimal. In coordinate descent, minimizing with respect to
M is equivalent to the update

m̂ij ∝ exp

(
− 1

T
||f(xi)− yj ||2

)
, (5)

followed by iterative row and column normalization. Given
these correspondences m̂, minimizing with respect to f is
equivalent to the update

f̂ = argmin
f

N∑
i=1

wi||f(xi)− ȳi||22 + λ||f ||2TPS , (6)

where wi =
∑N ′

j=1 m̂ij and ȳi =
∑N′

j=1 m̂ijyj

wi
. Note that

wi also equals 1 − m̂i(N ′+1), due to row and column
normalization of M.

TPS-RPM embeds coordinate descent within deterministic
annealing: it iteratively alternates between performing the
two update equations 5 and 6, while gradually reducing the
temperature T .

(iii) TPS-RPM for Trajectory Transfer
Using a point cloud representation for the demonstration

starting scene and for the test scene, Schulman et al. [2] use
the TPS-RPM algorithm to jointly find point correspondences
and a warping between the two scene point clouds. The
resulting warp function is then used to warp the path traced
by the end effector of the robot in the demonstration.

However, it is challenging to compute a high quality
warp function based solely on the location of points, be-
cause this only encodes low level shape information of the
corresponding objects, and thus lacks important semantic
knowledge. For instance, a good correspondence between
ropes should take into account the topology of the ropes;
in other words, the endpoints and/or crossings of the two
ropes should match. For towels, corners and edges should
be considered during the warp function computation, as well
as the presence of wrinkled as opposed to flat surfaces.
We use convolutional neural networks to learn these high
level semantic features for deformable objects. We show
incorporating this information improves the warps found by
TPS-RPM, thus enabling more successful trajectory transfer.

B. Convolutional Neural Networks

To learn local appearance descriptors, we use deep con-
volutional neural networks (CNNs), which have led to
breakthrough results on a variety of pattern recognition
problems [27] [29]. In general, neural networks are function
approximators and are trained in an end-to-end paradigm. In
our application, we use CNNs to classify image patches into
regions-of-interest on towels and ropes, as further explored
in Section IV.

CNNs are comprised of layers of convolutional filters that
are automatically learned from the training data. A single
convolutional filter looks for a specific pattern from its input
layer, expressed as a linear combination on the inputs of
a small spatial window. For example, filters in the first
convolutional layer, which operate on pixels when the input
is an image, can identify low-frequency patterns such as
different blobs of colors or high-frequency patterns such as
edges in various orientations. Multiple convolutional filters
are used in each layer, so that many patterns can be captured
and stored. Filters in subsequent layers can then learn to
identify increasingly complex structures, such as textures and
shapes. Through the network, spatial resolution is gradually
traded for increased semantic understanding of the input.
The convolutional nature of the net regularizes the model so
that expressive features can be learned through end-to-end
training with a relatively small number of parameters.

Convolutional layers are followed by non-linear units,
typically rectified linear units (ReLU). For image classi-
fication, the last layer of the network is a multinomial
logistic regression classifier. The whole network is trained
through backpropagation, commonly in the form of batch
stochastic gradient descent. Techniques to accelerate learn-
ing and reduce overfitting include momentum and dropout,
respectively.

Our CNN is inspired by the Alexnet architecture, which
won the 1000-category ILSVRC12 challenge [28]. We train



Downsampled points labeled with class of 
64x64 patch centered at that point 
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Fig. 2: Given a rope or towel image, we first use a color filter to remove points that are the background color, and downsample using a
voxel size of 2.5 centimeters. Then, we use the learned deep CNN to predict the label for the 64x64 window centered around each point,
resulting in a labeled point cloud. For the rope, endpoints, crossings and regular sections are labeled as teal, blue, and yellow, respectively.
For the towel, corners-against-background, edges-against-background, edges-against-interior, folds-against-background, flat interior, and
wrinkled interior are labeled as cyan, red, black, purple, brown, and green.

Linear SVM Alexnet [27],
finetuned

3 conv, 3 fc
CNN (1)

2 conv, 3 fc
CNN (2)

2 conv, 3 fc
CNN (3)

3 conv, 2 fc
CNN (4)

1 conv, 3 fc
CNN (5)

Number of Weights to Train 17,769 20,184,452 1,673,994 1,171,268 127,818 1,266,474 175,914

Rope Validation Accuracy 0.969 0.989 0.993 0.989 0.991 0.993 0.850
Time to Train 516s 6600s 3880s 3510s 3480s 3860s 1810s
Time to Test, on Validation 0.128s 18.6s 7.62s 7.32s 7.30s 7.61s 5.59s

Towel Validation Accuracy 0.894 0.940 0.935 0.938 0.935 0.653 0.616
Time to Train 1390s 6110s 1780s 1590s 1570s 1730s 835s
Time to Test, on Validation 0.390s 15.8s 6.40s 6.04s 6.00s 6.34s 4.72s

TABLE I: Comparison of using a linear SVM (with L2 penalty, L2 loss, C = 0.001) and different neural architectures for supervised
learning of rope and towel 64x64 patch labels. The input features for the linear SVM were HOG and DAISY features calculated from
each patch. Alexnet (finetuned from weights trained on ILSVRC12) achieves the highest validation set accuracy. We choose to use a
smaller neural net, CNN (3), for more efficient classification with essentially on-par performance for both rope and towel.

this CNN on our rope and towel datasets by using the open
source Caffe library [35].

IV. ACQUIRING APPEARANCE INFORMATION

For both the rope and towel, we use an RGBD camera
to acquire images and 3D point clouds of the object in a
variety of configurations. We capture appearance information
by training a classifier to classify patches of the RGB image
as different parts of the object. We tried several different
classifiers: a linear SVM trained on HOG and DAISY fea-
tures of the patches, the full Alexnet architecture, as well as
several simpler deep CNN architectures inspired by Alexnet.
We found one of the simpler CNNs worked best for this task.

A. Labeling Data

For each image, we manually label 64-by-64 patches with
the category that each patch’s center point belongs to. These
patches are selected to have adequate representation for each
category. For the rope there are four types of labels: crossing,
endpoint, regular section (i.e., any part that is neither a
crossing nor an endpoint), and background. For the towel
there are ten types of labels: corner-against-background,
corner-against-towel, corner-against-background-and-towel,
edge-against-background, edge-against-towel, fold-against-
background, fold-against-interior, flat towel interior, wrin-
kled towel interior, and background. The background refers
to the surface on which the object lies, which is a solid
color distinct from that of the object. We distinguish towel
edges from folds as well as flat from wrinkled interiors
because they often contain valuable information about which
demonstration should be used, and where the robot should
grasp during execution. This is also why we distinguish
between whether a corner, edge, or fold lies directly on top of

the surface or on top of the towel. Figure 2 shows examples
of the patches for ropes and towels.

B. Training and Choosing a Classifier

We label patches for 100 and 121 images of rope and towel
configurations, respectively. We randomly split these images
into training and validation sets: the training set consists of
7,645 patches for rope and 5,668 for towel, and the validation
set consists of 1,611 for rope and 1,356 for towel.

We tried using several different classifiers (Table I). First,
we used a linear SVM trained on hand-engineered local ap-
pearance descriptors (specifically, HOG and DAISY features)
of the patches, and compared that to finetuning Alexnet from
weights trained on ILSVRC12. The latter results in better
classification accuracy on the validation set for both towel
(0.940 vs. 0.894) and rope (0.989 vs. 0.969). 1

However, classifying image patches is much simpler than
the ImageNet task that Alexnet was designed for, so we
also explored CNN architectures with fewer layers and filters
(Table II). We found CNN (3) maintains high validation set
accuracy while classifying patches in 40% of the time as
Alexnet requires (Table I). Thus, we use CNN (3) as the
classifier in our experiments.

C. Overall Pipeline

Given an RGBD point cloud of a rope or towel, we first use
a color filter to remove points that are the background color.

1Note that while Alexnet is run on 227x227 images (in the Caffe reference
implementation), the first 5 layers, which are convolutional, can be readily
adapted to operate on our smaller 64x64 patches. The feature map at
this stage is reduced to a 1x1 spatial resolution, rather than 6x6 for a
conventional 227x227 input image. Due to this difference, finetuning can
only be done for the convolutional layers; the three fully connected layers
are trained from scratch.



TABLE II: The CNN architectures we experimented with for
learning local appearance descriptors. The simpler CNNs are based
off Alexnet, and their convolutional layers have the same filter size
and stride as the corresponding layer in Alexnet. The last fully
connected layer, fc8, has either 4 or 10 filters, corresponding to the
4 classes of rope patches or 10 classes of towel patches. The simpler
CNN architectures do not have the first pooling layer of Alexnet,
and do not pad images—we found that these changes improved
their performance.

Alexnet
[27]

CNN
(1)

CNN
(2)

CNN
(3)

CNN
(4)

CNN
(5)

conv1 96 64 64 64 64 64
conv2 256 32 32 32 32 -
conv3 384 32 - - 32 -
conv4 384 - - - - -
conv5 256 - - - - -

fc6 4096 1024 1024 256 1024 1024
fc7 4096 1024 1024 256 - 1024

Then we downsample the point cloud using a voxel size of
2.5 centimeters, in order to speed up computation of non-
rigid registrations. For each remaining point, we use CNN
(3) to determine the labeling for the 64-by-64 patch centered
at that point. The end result is a probability distribution over
patch classes, at each downsampled point (Figure 2).

V. TPS-RPM WITH APPEARANCE INFORMATION

A. TPS-RPM with Priors

We incorporate appearance information by building on
Combès et al.’s use of a prior on point correspondences in
TPS-RPM [36]. This prior encodes the probability that a
given source point and target point should be matched, inde-
pendent of the registration function and the spatial proximity
between the warped source point and target point. Combès
et al. show that by viewing TPS-RPM as a variation of the
Expectation-Maximization (EM) algorithm, incorporating a
prior on point correspondences reduces to defining a new soft
point correspondence matrix M′ such that m′ij = πijmij ,
where πij is the prior probability that the source point xi and
target point yj should be matched [36]. Thus, incorporating
this prior in TPS-RPM only impacts solving for soft point
correspondences, not the optimization of the warp function.

In this work, we set πij ∝ eβs(xi,yj), where is β is a
hyperparameter that controls the degree of influence of the
prior on the point correspondences, and s(xi,yj) is a non-
negative function that encodes the similarity between points
xi and yj . Our new update for M is now

m̂ij ∝ exp

(
− 1

T
||f(xi)− yj ||2 + βs(xi,yj)

)
. (7)

B. TPS-RPM with Learned Labels

To use predictions from the CNN as a prior, we set

s(xi,yj) =
∑
c∈C

min(pc(xi), pc(yi)) (8)

where C is the set of all possible patch classes, and pc(xi)
and pc(yj) are the class probabilities of the 64-by-64 patch
centered at xi and yj , respectively. For the rope, pc(xi) is

a probability distribution over four values, and for the towel
it is over ten values. This similarity measure is equivalent
to the histogram intersection between the two probability
distributions, which has been used successfully as a measure
of image similarity in prior work [37].

VI. EXPERIMENTS

We evaluate the benefit of using appearance priors with
TPS-RPM in the context of manipulation of rope and cloth.
In particular, we are interested in whether our approach is
able to find higher quality warp functions. Higher quality
warp functions result in a more accurate ranking of demon-
strations for a given test scene, and the transferred trajectory
will be more likely to succeed in the test scene.

The purpose of ranking demonstrations is to determine
which demonstration to transfer to the test scene. Schulman
et al. [2] first calculate the warp from each demonstration
scene to the test scene, and then rank demonstrations by
increasing warp bending cost. We use a similar approach, but
instead use TPS-RPM with appearance priors to calculate the
warps, which are then ranked based on a linear combination
of bending cost and appearance-based metrics.

A. Experiments with Rope

(i) Experimental Setup
Our dataset contains 322 rope configurations, which cor-

respond to starting states for the three steps in tying an over-
hand knot. 32 of the 322 rope configurations in our dataset
are randomly selected to be target rope configurations, and
the rest are source configurations. We obtain ground truth
point correspondences and warp functions for this dataset by
first manually labeling the overcrossings, undercrossings, and
endpoints located sequentially along each rope configuration.
These points define a given rope’s crossing configuration [5],
which uniquely determines the topology of the rope.

For each (source, target) pair with the same crossing
configuration, we then automatically calculate the ground
truth warp as follows. For each pair, we divide each rope
into several segments with boundaries as either endpoints or
crossings, and then resample each segment to have the same
number of points. After this resampling, each pair of ropes
will have the same number of points and the correspondences
between the two point clouds are completely specified.
Once we have these ground truth point correspondences,
we find the warp function that minimizes the TPS objective
(Equation 1), and set that as the ground truth warp function.

(ii) Matching Ground Truth Point Correspondences
For each (source, target) pair of rope configurations, we

compare the warping function learned by TPS-RPM with and
without appearance information.

Given M correspondence points between a source s and
target t rope configuration, we define the measure Dpoints =∑M
i=1 ||f(psi )−pti||2, where (psi , p

t
i) are the ith pair of ground

truth point correspondences. Dpoints measures the registration
error of the computed warp function f on matching the
corresponding points. Table III shows the average registration
error and bending cost across all pairs of source and target



  

source

target

   TPS-RPM 
warping result

  TPS-RPM + learned 
features warping result

     TPS-RPM
warping function

    TPS-RPM + learned 
features warping function

Fig. 3: Our approach uses learned appearance information, in the
from of appearance priors, to find a higher quality warp function
from source to target points—as shown for this pair rope config-
urations, in which regions of interest are endpoints and crossings.
The colors cyan, yellow, and blue indicate the predicted endpoints,
crossings, and normal regions in the rope, respectively. Red circles
indicate locations of the warped source points. The ideal warp
from source to target includes a rotation by 180◦, and warping
with appearance priors includes this rotation. By contrast, warping
without appearance priors reaches a poor local optimum, as seen
by the warped source points that are not close to any target points
(top row, middle picture).

rope configurations. As expected, using appearance infor-
mation improves matching of ground truth corresponding
points, and decreases the bending cost of the final warp found
by TPS-RPM—making it more likely that the transferred
trajectory will succeed when executed in the test scene.

Figure 3 is an example of the improvement gained by
using appearance priors when calculating the warp between
two RGBD rope point clouds: the points corresponding to the
crossings and endpoints of the two ropes are better matched,
and the warp function is more rigid as well.

Knot Demo
State

Warp Quality
Measure TPS-RPM TPS-RPM + Prior

Step 1 Dpoints (in cm) 1.42 1.08
bending cost 0.69 0.64

Step 2 Dpoints (in cm) 1.00 0.62
bending cost 1.05 0.91

Step 3 Dpoints (in cm) 3.91 2.64
bending cost 1.98 1.74

TABLE III: A comparison of the quality of warping functions calcu-
lated using TPS-RPM, with and without incorporating appearance
priors. Dpoints represents the accuracy of the warping function f in
matching ground-truth point correspondences between the source
and target rope configurations. The bending cost measures how
non-rigid f is; a more rigid warp (and thus lower bending cost)
is preferred. These numbers are averaged over all (source, target)
pairs belonging to each of the three demonstration steps in tying
an overhand knot.

(iii) Demonstration Selection
For a given test scene, we obtain a ground truth ranking

of the source configurations by ordering them by increasing
bending cost of the ground truth warps from each source to
the test scene. We use this to evaluate interpolated precision
and recall for the rankings produced by TPS-RPM with and

Fig. 4: Precision-recall curve for knot-tying demonstration selec-
tion, using TPS-RPM with and without appearance priors.

without appearance information, as follows. For each ranking
V , interpolated precision is calculated for the top k elements,
with k ranging from one to the total number of elements. Let
V (k) denote the set of top k elements, and let Vg denote the
set of source demonstrations which are of the same topology
as the target rope configuration. Then for a given ranking V
and for the top k elements, we calculate interpolated preci-
sion and recall as Precision(k) = maxj≤k(|V (j) ∩ Vg|)/j,
and Recall(k) = (|V (k) ∩ Vg|)/|Vg| [38]. For both variants
of TPS-RPM, precision and recall are averaged across all 32
targets for each value of k.

As seen in the resulting precision-recall curve (Figure 4),
using appearance priors significantly improves demonstration
ranking and thus selection.

B. Experiments with Cloth

(i) Ground Truth
We collected images and point clouds for 121 towel

configurations that are commonly seen while folding the
towel, with at least 15 towel configurations from each of the
eight steps (Figure 6). We randomly designated 84 (70%) of
these configurations as source (i.e., “demonstration” scenes)
and the rest as target configurations.

We compare the same versions of TPS-RPM as for
the rope: without any appearance information versus with
learned labels. However, we are not able to calculate ground
truth warp functions for pairs of towel configurations be-
cause it is difficult to accurately define ground truth point
correspondences from one towel configuration to another.

(ii) Matching Ground Truth Corner Correspondences
Since we cannot obtain ground truth correspondences for

all points between two towel configurations, we instead
consider ground truth correspondences between points in
regions of interest. Manipulation steps in folding a towel
generally involve grabbing corners and/or edge midpoints
of the towel. Thus, we define regions of interest to be
the corners and midpoint of each edge of the towel point
cloud. Table IV shows the following measures for TPS-
RPM with and without learned labels, averaged over the
pairs of configurations for each towel category: Dcorners =∑4
i=1 ||f(csi )− cti||2 and Dmidpoints =

∑4
i=1 ||f(ms

i )−mt
i||2,

where {csi} and {cti} are the four corners for source and
target towels, respectively; {ms

i} and {mt
i} are the four



Fig. 5: Precision-recall curve for towel-folding demonstration se-
lection, using TPS-RPM with and without appearance priors.

edge midpoints for source and target towels, respectively.
As expected, using appearance information generally results
in a better match of corners and edge midpoints, and a more
rigid warp.

Towel Folding
Demo State

Warp Quality
Measure TPS-RPM TPS-RPM +

learned labels

decrumple 1
(36 pairs)

corners 5.40 5.23
midpoints - -
bending cost 0.00355 0.00349

decrumple 2
(40 pairs)

corners 8.08 8.02
midpoints - -
bending cost 0.00267 0.00272

pick up corners
(36 pairs)

corners 14.30 14.61
midpoints - -
bending cost 0.00240 0.00238

triangles
(36 pairs)

corners 3.96 4.00
midpoints 2.44 2.42
bending cost 0.00106 0.00105

re-lay down
(56 pairs)

corners 4.12 4.10
midpoints 3.59 3.57
bending cost 0.00085 0.00086

first fold
(63 pairs)

corners 5.18 4.82
midpoints 6.93 6.46
bending cost 0.00108 0.00100

second fold
(48 pairs)

corners 3.18 2.90
midpoints 3.90 3.02
bending cost 0.00058 0.00053

third fold
(54 pairs)

corners 3.50 3.20
midpoints 3.57 3.10
bending cost 0.00077 0.00073

TABLE IV: A comparison of towel region-of-interest matching and
warp bending cost for TPS-RPM, with and without appearance
information. Please refer to Figure 6 for examples of each of
these towel demonstration scenes, labeled with corner and midpoint
points.

(iii) Demonstration Selection
Adding learned labels as appearance priors in TPS-RPM

also leads to better towel folding demonstration rankings.
Figure 5 shows the precision-recall curve, averaged across
the 37 target configurations. Precision and recall are calcu-
lated in the same way as for the rope, with Vg denoting the
set of towels of the same category as the target.

C. Evaluation of End-to-End Execution with a PR2 Robot

Ultimately, we are interested in whether our approach
enables using LfD for real-world execution of a challenging
deformable object manipulation task: towel folding. The

original approach of considering only point clouds (and
ignoring appearance information) in TPS-RPM runs into
difficulties for towel folding because the resulting warp often
does not match important regions such as corners and edges.
When these mismatches happen, trajectory transfer is very
likely to fail, since the steps in folding a towel depend on
successful grasping of the corners and edges of the towel.
In addition, when selecting the demonstration for a test
scene with a flat, non-wrinkled towel, TPS-RPM without
appearance information will not be able to distinguish among
the first fold, second fold, and third fold starting states,
without hardcoding scaling penalties.

Incorporating appearance priors in TPS-RPM makes it
possible to fold towels through LfD by matching regions
of interest more accurately. Using our approach, a Willow
Garage PR2 robot folded a towel successfully in six out of
ten trials starting from fully crumpled towel configurations.
Our website, mentioned in Section I, contains a recording
of one of the successful executions. Trajectory transfer
is done using TPS-RPM with learned labels, and corners
are downsampled using a smaller voxel size, to improve
precision while not increasing runtime significantly.

On the website is also a video containing examples of
failure cases. The primary failure cases are caused by the
lack of a demonstration that is similar enough to the test
scene, which results in a poor warp found by TPS-RPM.
When this happens, the robot either grasps at an incorrect
location or completely misgrasps. The robot is generally able
to recover from failures, unless the failure caused the towel
to move out of view, or neither gripper grasped the towel.

VII. CONCLUSION AND FUTURE WORK

We have presented a method for encoding appearance
information for deformable objects and incorporating these
learned labels to improve the performance of learning from
demonstration. The labels are learned by a deep CNN trained
on labeled patches sampled from demonstration images, and
are then used as a prior on matching object point clouds in
TPS-RPM. We evaluated our approach in the context of two
typical instances of deformable object manipulation: tying
knots in ropes and folding towels. We find using appearance
priors in TPS-RPM improves demonstration selection, and
can reduce error in trajectory transfer by guiding TPS-
RPM towards more reasonable point correspondences. Our
approach enables the first successful application of LfD to
folding a towel from a fully crumpled state.

In future work, misclassification of patches (especially in
the case of cloth) could be reduced by combining both depth
and color images in patch classification. It would also be
interesting to investigate the performance of our approach
on objects with a variety of different patterns and textures,
and under different lighting conditions; our approach should
be able to be readily adapted to these variations. In addition,
the method we proposed relies on supervised learning and
requires a relatively large set of labeled patches. State-of-the-
art unsupervised feature learning techniques such as sparse
coding could help reduce dependency on labeled data.



Decrumple 1 Decrumple 2 Pick Up Corners Triangles Re-lay Down First Fold Second Fold Third Fold

Fig. 6: The eight demonstration steps we use for folding a fully crumpled towel. Green and blue circles denote the corners and edge
midpoints, respectively, labeled for ground-truth point correspondences. These correspondences are used to evaluate our method in Table IV.
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