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Abstract— Robotic surgical assistants (RSAs) enable surgeons
to perform delicate and precise minimally invasive surgery.
Currently these devices are primarily controlled by surgeons in
a local tele-operation (master-slave) mode. Introducing auton-
omy of surgical sub-tasks has the potential to assist surgeons,
reduce fatigue, and facilitate supervised autonomy for remote
tele-surgery. This paper considers the sub-task of surgical
debridement: removing dead or damaged tissue fragments to
allow the remaining healthy tissue to heal. We present an
implemented automated surgical debridement system that uses
the Raven, an open-architecture surgical robot with two cable-
driven 7 DOF arms. Our system combines stereo vision for 3D
perception, trajopt, an optimization-based motion planner, and
model predictive control (MPC). Experiments with autonomous
sensing, grasping, and removal of over 100 fragments suggest
that it is possible for an autonomous surgical robot to achieve
robustness comparable to human levels for a surgically-relevant
subtask, although for our current implementation, execution
time is 2–3× slower than human levels, primarily due to replan-
ning times for MPC. This paper provides three contributions:
(i) introducing debridement as a surgically-relevant sub-task
for robotics, (ii) designing and implementing an autonomous
multilateral surgical debridement system that uses both arms
of the Raven surgical robot, and (iii) providing experimental
data that highlights the importance of accurate state estimation
for future research.

I. INTRODUCTION

Robotic surgical assistants (RSAs), such as Intuitive Sur-
gical’s da Vinci R© system, have proven highly effective in
facilitating precise minimally invasive surgery [9]. Currently
these devices are primarily controlled by surgeons in a
local tele-operation mode (master-slave with negligable time
delays). Introducing autonomy of surgical sub-tasks has
potential to assist surgeons, reduce fatigue, and facilitate
supervised autonomy for remote tele-surgery.

In this paper, we introduce surgical debridement as a
relevant subtask for autonomous surgical robotics. Surgical
debridement is a tedious surgical sub-task in which dead or
damaged tissue is removed from the body to allow the re-
maining healthy tissue to heal [2], [10]. Autonomous surgical
debridement requires perception to locate fragments, grasp
and motion planning to determine collision free trajectories
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Fig. 1. Hardware for autonomous multilateral debridement. The Raven
surgical robot has two cable-driven 7-DOF arms. The system uses a pair of
digital cameras for stereo 3D vision.

for one or more arms and grippers to grasp them, and control
to deposit them into a receptacle (see Fig. 2(b)). We study
autonomous multilateral execution of this subtask.

We use the Raven surgical robot system [12], augmented
with a stereo vision system for perception, as a testbed
for evaluating the feasibility of autonomously performing
surgical debridement with two arms (multilateral operation),
as shown in Fig. 1.

Autonomous execution of surgical sub-tasks is challeng-
ing. Many surgical robots, such as the da Vinci and the
Raven, have 6 DOF per arm (plus a grasp DOF), so there
is no joint redundancy. Also, each arm must enter the body
through a port that constrains the motion at that point akin
to a spherical joint. These constraints, combined with a
very limited workspace, make for a particularly challenging
robotic manipulation setting. Further, the need for steriliza-
tion has resulted in the placement of actuators and encoders
outside the body, where they connect inside using cable-
driven mechanisms, which have much less precise control
than stiff geared actuators.

For perception, the constrained and highly reflective sur-
faces of the actuators and body organs create difficulties
for standard 3D point cloud methods. We use stereo vision,
which is increasingly common in RSA systems. The chal-
lenges of autonomous computer vision are well known and
include noise, calibration, segmentation, and occlusions.

Because of the uncertainty outlined above, replanning
is required to prevent robot collisions with obstacles (the
other arm, the worksurface, or other objects). Collisions are
a familiar problem in robotics, but are exacerbated with
surgical robots because a collision with the worksurface can
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Fig. 2. Varying levels of realism in the surgical debridement task. (a) Two
arm surgical debridement with simulated anatomical structures containing
multiple foam colors. (b) Single arm surgical debridement. (c) Two arm
surgical debridement with plain white background. This is the setup used
in the experiment.

snap cables requiring extensive repair time in addition to the
cost of collision with patient anatomy.

To the best of our knowledge, this is the first description
of a Raven performing a manipulation task autonomously.
For context, we report experiments performed by a medical
student with training in laparoscopic surgery. The human
executes surgical debridement using a 3D display fed by
the stereo camera pair and local teleoperation devices. We
compare one-arm and two-arm autonomous performance in
terms of robustness (failure modes) and timing.

Our experiments indicate that grasping and manipulation
tasks associated with the surgical debridement task can be
performed reliably with a Raven surgical robot system. We
evaluate performance with the human debriding 30 frag-
ments, with one-arm debriding 60 fragments, and with two-
arms debriding 60 fragments.

II. RELATED WORK

Existing robotic surgical systems can be categorized into
a spectrum based on the modality of interaction with the
surgeon [30], [37]. These systems range from pure tele-
operated or master/slave systems that directly replicate the
motions performed by the surgeon [11], [30], to supervi-
sory or shared-control systems where the surgeon holds
and remains in control of the medical instrument and the
robot provides assistance [36], to purely autonomous systems
where medical motions are planned off-line when detailed
quantitative pre-operative plans of the surgical procedure

can be laid out and executed autonomously without intra-
operative modification [38]. In addition, intelligent robotic
assistants have also been proposed for rendering assistance
in minimally invasive surgery [17], [20].

In this work, we focus on autonomous execution of a
tedious surgical sub-task known as surgical debridement
[2], [10], which involves removing damaged tissue from an
affected area to allow the surrounding tissue to heal. We
note that prior work has addressed the problem of designing
planning and control algorithms for autonomous execution
of other surgical sub-tasks such as knot tying or suturing
[28], [39] and tissue retraction during surgery [22], [14].

Recent advances in motion planning, control, and percep-
tion have enabled robotic systems to perform complex ma-
nipulation tasks in real world domains [3], [8], [7], [31], [33].
These systems perform integrated task and motion planning
(see e.g., [1], [6], [16], [40]) by using state machines or
task graphs [4], [34] for high-level task specification and
motion planning algorithms for realization of low-level sub-
tasks. Extensions have been proposed to consider uncer-
tainty in task execution [15], [35]. Our work uses a similar
architecture for autonomy that integrates a high-level task
specification in terms of a state machine [4] with low-level
planning. However, instead of open-loop execution of motion
plans for accomplishing low-level sub-tasks, we re-plan after
every time-step in the spirit of model predictive control [27]
to mitigate uncertainty.

There is extensive prior work on calibration of kinematic
parameters of robotic manipulators [13]. Extensions have
been proposed to simultaneously calibrate robot and sensor
(e.g., camera) parameters [24], [41]. These methods cannot
account for errors resulting from material non-linearities
such as cable stretch, prevalent in cost-effective cable-driven
actuation mechanisms. We follow the data-driven approach
of Pastor et al. [21] to characterize the systematic error in
camera calibration and registration using an optimization-
based approach, and residual kinematic errors due to non-
linearities using Gaussian process regression [26].

III. SURGICAL DEBRIDEMENT

Laparoscopic surgery requires the execution of many
different sub-tasks, including incisions, suturing, clamping,
retraction, etc. Not all of these are suited to autonomous
operation; for example, cutting into organs requires very
high precision and is high risk. Different sub-tasks require
different instruments, when some surgical robots only have
gripping tools available.

The Fundamentals of Laparoscopic Surgery [29], a skills
training program for laparoscopic surgery, provides a pick-
and-place task involving the transfer of triangular blocks
between vertical pegs (see Fig. 3). However, this task is not
well-suited to autonomous operation. The size of the blocks
requires very high precision, and the rigid pegs can cause
damage to the robot if it impacts them.

A. Task Definition
We propose surgical debridement as task for perform-

ing experiments with autonomous surgical robots. Surgical



Fig. 3. Fundamentals of Laparoscopic Surgery pick-and-place task, used
in a skills training program. The blocks must be grasped and transferred
between pegs.

debridement is a tedious surgical sub-task in which dead
or damaged tissue is removed from the body to allow the
remaining healthy tissue to heal faster [2], [10].

Surgical debridement has several features that make it
attractive for autonomous operation. It is a tedious task,
which means automation could reduce surgeon fatigue. A
simulation of the task can be performed with only a gripper,
and it involves detection, grasping, and motion planning
components. Importantly, the task or any one of its compo-
nents can be approximated with varying degrees of realism
(see Fig. 2), allowing autonomous surgical robots to start
with simple environments and build up to more and more
realistic situations.

We consider an idealized environment in which fragments
designated as damaged tissue are distributed throughout
the environment. The robot must find the damaged tissue
fragments, grasp them, and place them in a receptacle.
The level of complexity for different aspects of the task
can be varied, from providing fragments to be avoided, to
situating the fragments in a tissue phantom, even to attaching
the fragments to the work surface and requiring a cutting
action for removal. Alternatively, any or all of these may be
simplified to provide a low barrier to entry for autonomous
surgical robotics research. The goal is to facilitate safe
(collision-free) multilateral autonomous execution of the
surgical debridement task using a surgical robot.

B. Failure Modes

We define several failure modes for this task:
Identification:

1) Fragment false negative: no detection of a fragment in
the workspace.

2) Fragment false positive: detection of a fragment where
none exists.

3) Pickup false negative: after grasping, no detection of
a fragment in the gripper, causing an unnecessary
regrasp.

4) Pickup false positive: after a pickup failure (see below),
detection of a fragment in the gripper.

Grasping:
5) Grasp failure: the gripper is closed, but no part of the

fragment is within the gripper.
6) Multiple grasp: the gripper unintentionally grasps mul-

tiple fragments. When targeting a single fragment for

pickup, any other fragments grasped could possibly be
healthy tissue, even if they happen not to be.

7) Pickup failure: the gripper has closed on some part of
the fragment, but the fragment falls out of the gripper
on lifting.

Movement:
8) Drop en route: after lifting, the fragment falls out

during the move to the receptacle.
9) Dropoff failure: the fragment is dropped from the

gripper upon arrival to the receptacle, but the fragment
lands outside the receptacle.

IV. HARDWARE

A. Raven Surgical Robot

We use a Raven surgical robot system (Fig. 1) for evalu-
ating the feasibility of multilateral autonomous execution of
the surgical debridement task.

The Raven is an open-architecture surgical robot for
laparoscopic surgery research with two cable-driven 7 DOF
arms. It is intended to facilitate collaborative research on
advances in surgical robotics [12].

The primary difficulty in using the Raven for autonomous
operation is state estimation. The joints do not have encoders
on them; instead, measurements of the joint angles can only
be taken from encoders mounted on the motors (i.e., the
cable capstans) but not on the joints. The joints on the arms
are connected to motors at the base using up to four meters
of small-gauge cable, and the cables are coupled through
multiple joints, so the motor measurements do not reflect
the slack or stretch in cables that affect the joint angles.
As a result, even a small amount of slack or stretch in the
cables can greatly increase the uncertainty in gripper pose.
State estimation has previously been explored in simulation
[25], but not in physical experiments.

Fig. 4. Removable bracket for rigidly mounting a checkerboard in the
workspace for registering the stereo cameras. We use routines from OpenCV
for this purpose [5].

B. Vision Hardware

Since the kinematics introduce considerable uncertainty in
the calculation of the gripper pose, we use a vision system to
obtain direct measurements of the pose. The Raven presents
challenges on this front as well. The size of the grippers is
too small to use complex fiducial markers like those based on
2D bar codes. We were able to place a fiducial marker on the



wrist link of the robot, but the small size meant the cameras
had trouble detecting the marker, and the measurement was
highly noisy even when it was detected.

We use a stereo vision system to estimate the pose using
colored dots mounted on the gripper (Fig. 2(b)). The stereo
vision system is also used to construct a static 3D point
cloud from the disparity image, which is used to localize the
fragments. Off-the-shelf stereo cameras are usually built for
larger workspaces, and thus the camera pair are too widely
separated for our environment. We constructed a custom
stereo camera using a pair of Prosilica GigE GC1290C
cameras with 6 mm focal length lenses at a separation of
4.68 cm for this purpose.

We also experimented with a Primesense Carmine sensor
for obtaining point clouds of the environment. However,
the Carmine relies on a projected texture, which does not
work on specular reflective surfaces like the stainless steel
the Raven tool is constructed from. Therefore, the Carmine
cannot be used for detecting the gripper.

The cameras must be registered to the robot frame to allow
their detections to be used to direct the robot. However, the
small size of the workspace prevents the camera field of
view from including the robot base. To register the cameras,
we fabricated a removable bracket for a checkerboard that
could be mounted to the robot base (see Fig. 4), putting
the checkerboard in the camera field of view with a known
pose relative to the base. This also allows calculation of the
transform between bases of the individual arms, which are
not precision mounted relative to each other, by using the
camera as an intermediate frame.

V. PROBLEM DEFINITION AND METHOD

The surgical debridement task environment considered
for this work focuses primarily on the motion planning
component of the task. The vision component is simplified
through the use of a uniform white background. For the
grasping components, the tissue fragments were modeled
with small, irregular pieces of foam rubber.

This section covers the vision system for fragment de-
tection and gripper pose estimation in Section V-A, the
optimization-based MPC approach in Section V-B, and the
multilateral coordination required by the task in Section V-C.

A. Vision System

We use the vision setup outlined in Section IV-B to detect
and segment the fragments and for detecting the gripper pose.

1) Fragment Segmentation: In order to reliably retrieve
the fragments, we must localize the fragments with re-
spect to the robot using the vision system. To simplify the
localization, we restricted all fragments to be a specific
red hue with a known upper and lower bound of HSV
(Hue, Saturation, Value) given the lighting conditions of the
workspace. Furthermore, this HSV range was not present
elsewhere in the workspace. Given this constraint, localizing
the fragments was a three-step process. First, we threshold
the image based on HSV values to identify the groups of
pixels representing the fragments. Then, we find a reference

point for the fragments by tracing the contours and com-
puting the region centroid. Finally, we use the disparity of
the fragment centroid between the left and right images to
calculate the position of the fragment centroid in 3D space.
To help deal with partially occluded foam pieces, we use an
alternative fragment reference point with a constant offset
from the lower bound of the fragment in the image.

2) Pose Estimation: Reliable, autonomous execution re-
quires precise determination of the gripper pose during ex-
ecution. Since the forward kinematics produce an unreliable
estimate of the gripper pose, we use the vision system to
detect the gripper pose.

We estimate the gripper pose using color-based fiducial
marks. For each gripper finger, we designate a specific color
with a known range of HSV values, given the constrained
lighting conditions of the workspace. Each gripper finger
has exactly two such marks of the same color, one on the
end closest to the joint, and one on the end closest to the
tip (see Fig. 2(b)). Using a process similar to the fragment
segmentation, we threshold incoming images from the stereo
pair for each of the four known HSV values and use the
centroids of the regions along with the disparity to find the
points in 3D space.

To determine the origin of the gripper pose, we the average
of the position of upper left and upper right fiducial marks
on each of the grippers. We calculate the orientation of the
gripper pose by finding the vectors along each gripper finger
using the fiducial marks. These vectors are coplanar, and the
orientation is determined from the component-wise average
of the vectors (the axis along the center of the gripper) and
the normal (parallel to the gripper joint axis).

The detected pose is assumed to be the true pose. However,
these updates occur at best at 10 Hz but are often slower, and
may not happen for some time, for example while carrying
a fragment, the markers on the gripper may be occluded. To
allow for estimated poses in between these updates, we use
a pose estimation algorithm using updates from the forward
kinematics pose.

We denote the detected gripper pose at time t as Tc,t, and
the pose calculated by the forward kinematics as TFK,t.

Given the detected and calculated poses at two times
t0 and t1, we first calculate the delta-pose for each,
∆Tc,t0→t1 = T−1c,t0Tc,t1 and ∆TFK,t0→t1 = T−1FK,t0

TFK,t1 As
described below, we find two adjustment transforms TA,L

and TA,R such that

∆Tc,t0→t1 = TA,L∆TFK,t0→t1TA,R (1)

Then, given a new calculated pose at time t2, without
having received a new detected pose, we estimate the true
pose by finding ∆TFK,t1→t2 = T−1FK,t1

TFK,t2 , and applying
the adjustment transforms:

T̂c,t2 = TA,L∆TFK,t1→t2TA,R (2)

The adjustment matrices in Eq. 1 are iteratively updated
with each received detected pose, alternating between up-
dating TA,L and TA,R. They are both initialized to identity,
TA,L,0 = TA,R,0 = I4. Given the above update at t1, we



keep TA,R,1 = TA,R,0 and update the left adjustment matrix
as follows:

TA,L,1 = interp(TA,L,0,∆Tc,t0→t1(∆TFK,t0→t1TA,R,0)−1)

Then, given a second update of the detected pose at t3,
we keep TA,L,2 = TA,L,1 and update the right adjustment
matrix:

TA,R,2 = interp(TA,R,1, (TA,L,1∆Tc,t1→t3)−1∆TFK,t1→t3)

where the interp function is linear interpolation of the
position and spherical linear interpolation for the orientation.

B. Optimization-based Motion Planning with trajopt

Due of the large kinematic uncertainty, an arm may not
closely follow the path it is given, which increases the chance
of collisions. There are two options for dealing with this
situation: (i) allow for this error with a safety margin around
the path that the other arm must keep out of, or (ii) use
a Model Predictive Control approach and replan frequently
using updated pose estimates. Because of the small size of
the workspace for the Raven, the first option is not feasible;
the size of the safety margin would preclude the other arm
from operating anywhere near it. Additionally, this means
that both arms must plan together; a path planned for a single
arm would have to include this safety margin if the other arm
was independently planning its own path. For more details,
see Section V-C.

Frequent replanning is also required to maneuver the arm
onto the fragment for grasping. In the current system, each
arm is permitted to move a maximum of 2.5 cm before
replanning. With this maximum distance, the safety margin
can be set very small. During experiments, the safety margin
was set to 1 mm with no collisions occurring.

We use trajopt [32], a low-level motion planning algorithm
based on sequential convex optimization to plan locally-
optimal, collision-free trajectories simultaneously for both
arms. An important feature of trajopt is the ability to check
continuous collisions: the arm shafts are very narrow, which
could allow them to pass through each other between points
on the path.

Additionally, trajopt provides flexible facilities for inte-
grating many different constraints, including collision con-
straints, pose constraints, and feasibility (e.g., joint limit)
constraints. We use all three kinds of constraints. The pose
constraint is used to ensure the orientation of the gripper
keeps the colored markers towards the cameras so that pose
estimation will continue receiving updates.

C. Multilateral Coordination

The surgical debridement task for two arms is very similar
to two copies of the single-arm task. However, coordination
is required between the two arms in several important places.

There is a single receptacle that is not big enough for both
arms to drop fragments into at the same time. Therefore, the
arms synchronize their access to the receptacle. The arms
must also coordinate in allocating fragments so that they do
not attempt to pick up the same fragment.

Besides the two above synchronization points, coordi-
nation must occur during path planning. If there was no
uncertainty in kinematics, there would be no synchronization
required: each arm could plan a path based on its knowledge
of the other arm’s future position. However, as noted above,
the presence of large uncertainty in the Raven kinematics
means that an arm planning around the path of another arm
would have to use such an unworkably large safety margin.
Therefore, the paths for both arms are always planned
together.

Because the arms operate independently except for the
cases listed above, the two-arm planning is done in a manner
transparent to the control code. The control code for each arm
proceeds independently in parallel, with a single separate
planner also running in parallel. When an arm reaches a
replanning point, it submits a request to the planner and waits
for a response. Once the planner has received a planning
request from both arms, it calculates a two-arm path and
returns the individual paths to the respective arms, which
then resume independent execution. The same system is used
for one-arm operation; in this case, the planner can plan as
soon as it receives a request from the arm.

VI. RESULTS AND DISCUSSION

A. Experimental Setup

The experiment was performed with six foam rubber frag-
ments in a random configuration, as shown in Fig. 2(c). The
receptacle, located at the front of the workspace, measured
approximately 11×7 cm.

For teleoperation, the human operator viewed the
workspace through the stereo pair using a 3D monitor, and
controlled the Raven using the Razer Hydra controller.

We use the failure modes defined in Section III-B. We
experienced occasional static cling in which the fragment
would not fall out of an opened gripper; in these cases, failure
was indicated if the fragment would have fallen outside the
receptacle.

B. Autonomous Performace and Comparison with Teleoper-
ation

The purpose of autonomous surgical robotics is to offload
tedious tasks from the surgeon. For comparison, we had
the task performed in teleoperation by a third-year medical
student with experience on a laparoscopic simulator. To
simulate surgical conditions, the teleoperation was performed
by viewing the workspace on a 3D monitor using the same
cameras used by the autonomous system.

Table I shows the comparison between single-arm au-
tonomous, two-arm autonomous, and teleoperated execution.
The autonomous system was executed ten times for each test,
and the human operator executed the task five times.

The autonomous system in two-arm operation took on
average 2.1× longer than in teleoperation. However, the
amount of time spent in motion for the two arm system
was actually slightly less than for the overall teleoperation
execution time. This was despite the fact that, in the au-
tonomous operation, the robot moved slowly due to the need



Human Autonomous
Local Teleoperation 1 arm 2 arm

Total number of fragments 30 60 60

Avg. time per fragment (s) 29.0 91.8 60.3
Avg. time for perception (%) – 12.1 10.0
Avg. time for planning (%) – 32.8 36.6
Avg. time for arm movement (%) – 55.1 45.7
Avg. time waiting on other arm (%) – – 7.7

Avg. number of replanning steps – 11.06 10.58

Fragment false negative (%) 0.0 1.9 0.0
Fragment false positive (%) 0.0 0.0 0.0
Pickup false negative (%) 0.0 0.0 0.0
Pickup false positive (%) 0.0 0.0 3.6

Grasp failure (%) 5.0 3.5 3.6
Grasp multiple fragments (%) 0.0 5.2 7.1
Pickup failure (%) 0.0 0.0 0.0

Drop en route (%) 0.0 0.0 1.8
Dropoff failure (%) 0.0 0.0 0.0

TABLE I
AVERAGE EXECUTION TIME AND OCCURRENCES FOR FAILURE MODES DEFINED IN SECTION III-B. THE NUMBER OF REPLANNING STEPS IS THE

NUMBER OF TIMES DURING EXECUTION THAT THE SYSTEM ACCEPTS A NEW INPUT AND OUTPUT STATE AND GENERATES A NEW PLAN. THE

TWO-ARM AUTONOMOUS SYSTEM PERFORMED APPROXIMATELY HALF AS FAST AS TELEOPERATION, BUT 1.5× FASTER THAN THE ONE-ARM

AUTONOMOUS SYSTEM. THE FAILURE RATES WERE SIMILAR BETWEEN AUTONOMOUS AND TELEOPERATION, WITH ALL BUT ONE FAILURE MODE

OCCURRING LESS THAN 5% OF THE TIME. THE MULTIPLE-FRAGMENT GRASP FAILURE MODE OCCURRED DUE TO SEGMENTATION LUMPING CLOSE

FRAGMENTS TOGETHER.

to obtain recent updates from the vision system. Although the
teleoperator was permitted to use both arms simultaneously,
we did not observe him using them in this manner. Each frag-
ment was picked up sequentially. The autonomous system,
however, was able to parallelize its arm movements. If the
kinematics were reduced and the pose estimation improved,
the camera updates could be less frequent and the speed of
the robot higher.

The planning and perception together took nearly 50% of
the time. The perception code was coded in Python and was
not optimized to take advantage of available GPU hardware,
which indicates that significant speedups can be made.

The planning time was due in large part to the number of
times the system must generate a new plan. Currently, the
system must plan an average of 10.81 times during the move
to, grasping, and dropoff of a single fragment. This is due
to the 2.5 cm maximum distance that an arm is permitted
to move before replanning. We found that increasing this
distance caused the actual path to deviate too far from the
planned path. Improved state estimation would reduce this
deviation, allowing for longer distances between replanning.

As noted in Section V-B, the short replanning distance
allowed for a very small safety margin to be used, 1 mm. This
allowed the two arms to pick up closely-packed fragments
more quickly, as the arms could pick up adjacent fragments
without penetrating the safety margin.

The two-arm autonomous system was on average 1.5×
faster than the one-arm system. This is less than a 2×
speedup due in part to waiting time and to increased planning
and perception times under the added complexity of two

arms.
Both autonomous and teleoperated systems were able to

successfully complete all trials, recovering from grasp and
motion failure modes. No false negatives were observed,
though the vision system would occasionally lump two close
fragments together as a single detection; once one of the
fragments was picked up, the other would be correctly
detected. The grasp failure rate was higher for teleoperation
than for the autonomous system; we believe this is due to the
3D camera not being spaced optimally for human viewing,
which led to the human operator reporting a lack of sufficient
depth perception.

Further information on this research, including data, pho-
tos, and video, is available at:
http://rll.berkeley.edu/raven.

VII. CONCLUSION AND FUTURE WORK

We have demonstrated that it is possible for an au-
tonomous surgical robot to achieve robustness comparable
to human levels for a surgically-relevant subtask, yet many
challenges remain. Execution time is 2–3× slower than hu-
man levels, primarily due to replanning. Our current system
essentially assumes the uncertainty grows at a rate such that,
after 2.5 cm, the actual pose can be sufficiently far from
the planned pose that replanning is required. Two factors
could reduce replanning time: 1) faster processing of each
replan step, which could be achieved by parallelization or
by advances in Moore’s law, and 2) reducing the number
of times the robot must replan: in our current system, the
average is 10.81 planning calls per fragment. The latter could
be achieved with improved state estimation for the following



reason: since the workspace for surgical robots is small and
there are a number of obstacles, any decrease in uncer-
tainty can play a crucial role. With more sophisticated state
estimation and/or estimation that is state/trajectory/obstacle
dependent, the state estimates used in a path would remain
valid for longer, which reduces the number of replanning
steps, in turn reducing overall execution time.

For surgical robots where space is limited and sterilization
is essential, cable-driven actuators are often used and it is
not feasible to install joint sensors at the distal ends of
the devices. Such indirect control and sensing is inherently
imprecise. One approach to improving state estimation is to
learn and update systematic and residual error models over
time, and to combine these into a dynamic state estimation
filter. This can also be combined with a probabilistic state
model to replace the worst-case error model.

In future work we will develop more sophisticated state
estimation. In addition to reducing the amount of uncer-
tainty (see next section for initial results), we will use
tools to manage uncertainty in a more sophisticated way,
including probabilistic state estimation using Belief Space
[19], [23]. We will perform controlled experiments with
humans at different skill levels (including at least one master
surgeon). We will also explore increase task complexity,
for example using a mix of fragments of different types
and introducing other additional obstacles in the workspace,
and a hybrid/supervisory system as in a remote tele-surgery
scenario, where a human supervisor is in the loop to period-
ically confirm a set of detections and motion plans prior to
execution.

A. Error Characterization

As we have demonstrated, state estimation is one of the
main problems in performing autonomous operation with
the Raven. In addition to improving pose estimation through
machine vision, we also plan to improve the pose estimation
through the forward kinematics.

Using the approach from Pastor et al. [21], we charac-
terized the systematic error in the forward kinematics. We
moved the gripper around a 3D grid in the workspace using a
tele-operation interface and collected n = 650 data samples.

Each sample consisted of the gripper pose, denoted by
the transformation matrix Tc, as estimated using the stereo
vision system, and the gripper pose TFK as computed using
the forward kinematics of the robot [18]. The gripper pose
Tc is in the camera frame and the gripper pose TFK is in
the world frame, and the transformation matrix between the
camera frame and the world frame is given by Tc→w. We use
standard methods from the OpenCV library [5] to compute
this registration of the stereo camera pair to the world
frame. To minimize errors in computing Tc→w, we rigidly
mount a checkerboard to the robot frame, the dimensions of
which are exactly known (Fig. 4). Ideally, the gripper poses
estimated using vision and forward kinematics should be
identical in the common world frame, i.e., TFK = Tc→wTc,
but this is not the case in practice. Then, we optimized
the best transformation that minimizes the systematic pose
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Fig. 5. Position estimates from machine vision, forward kinematics, and
forward kinematics with systematic error correction. The position estimate
from machine vision is assumed to be the true position (though it is noisy).
The RMS error of the position (not per-axis) for the forward kinematics is
1.1 cm, and for the forward kinematics with systematic error correction it
is 0.3 cm

error between the forward kinematics model and the pose
determined using the stereo vision system in the world frame.

The systematic error is characterized by the rigid trans-
formation Tsys, which transforms the gripper pose estimated
from the forward kinematics TFK to better match the gripper
pose estimated from the vision system in the world frame
Tc→wTc. That is, in the absense of state-dependent errors,
TsysTFK = Tc→wTc should hold. We compute the best trans-
formation Tsys =

[
Rsys psys

0> 1

]
by solving the the following

constrained optimization:

min
Tsys

n∑
i=0

‖TsysTFK,i − Tc→wTc,i‖2F, s. t. RsysR
>
sys = I,

(3)
where ‖A‖F denotes the Frobenius norm of a matrix, Tc,i

and TFK,i are the gripper poses obtained from vision and
forward kinematics, respectively, for the ith data sample,
and RsysR

>
sys = I , or equivalently, vec[RsysR

>
sys − I] =

0, enforces the orthonormality constraint. We initialize the
optimization with the identity transformation I .

The results are shown in Fig. 5. The detected pose, though
noisy, is assumed to be the actual pose. The RMS position
error for the forward kinematics is 1.2 cm, and for the
forward kinematics with systematic error correction the RMS
error is 0.3 cm. Though not shown on the plot, the RMS error
for the pose estimator outlined in Section V-A.2 is 0.4 cm.
The results suggest that even after correcting for systematic
error such as camera registration, there remains a smaller but
significant residual error that may be state dependent or non-
affine. In future work, we will apply the the method of Pastor
et al. to correct for residual errors using Gaussian Process
Regression to further improve state estimation.
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