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ABSTRACT

Establishing trust amongst agents is of central importandhe
development of well-functioning multi-agent systems. sEr(or
reputation) mechanisms can help by aggregating and sheisiy
information between agents. Unfortunately these mechann
often be manipulated by strategic agents. Existing meshaare
either very robust to manipulation (i.e., manipulations aot ben-
eficial for strategic agents), or they are very informative.{good
at aggregating trust data), but never both. This paper eplinis
trade-off between these competing desiderata. First, tvednce
a metric to evaluate the informativeness of existing trustina-
nisms. We then show analytically that trust mechanisms &n b
combined to generate nelybrid mechanismsvith intermediate
robustness properties. We establish through simulatianhiybrid
mechanisms can achieve higher overall efficiency in enunemts
with risky transactions and mixtures of agent types (sonwp€o
erative, some malicious, and some strategic) than any qurslyi
known mechanism.
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1. INTRODUCTION

We often interact with anonymous parties over the Internet a
in many environments this can lead to fraudulent behavior.ef-
ample, on e-commerce websites a seller might advertisedugiro
with false information, or in P2P networks a malicious uséghh
distribute a virus. Online, it is difficult to know whom to su In-
formation from other users with previous experience in thme
online system can help separate malicious from trustwaut®rs
and incentivize all users to act cooperatively. On eBay fame
ple, user feedback about the quality of sellers and buyexggse-
gated. Research has shown that consumers take the aggdregate
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formation regarding a seller into account when purchasiogyrcts
[12]. Mechanisms that aggregate information and comput®ees
for each agent are callgdust mechanisméor reputation mecha-
nism3.} In this paper we focus on the design tefinsitive-trust
mechanisms, i.e., we assume that if agent A trusts B, anddsstru
C, then A also trusts C to some degree.

1.1 Informativeness vs. Strategyproofness

We aim to design trust mechanisms that have gaéarmative-
nessas well asstrategyproofnesproperties. A mechanism is in-
formative if it aggregates the available information welich that
agents using it can successfully separate good from bathdgrad
partners. A mechanism is strategyproof if agents cannotawep
their utility in the system by manipulating the trust medksam
Strategyproofness is important here because we considgnane
nisms that must rely on information provided voluntarily the
agents and where the outcome of individual transactionsatdre
monitored centrally. Depending on the particular trust nag@ism,
agents might be able to manipulate by spreading bad infawsmat
about other agents in the system, or by creating fake ageytiss)
that spread good information about themselves.

Existing aggregation methods represent distinct traddxtween
robustness and informativeness. This can be problemaiwérall
system efficiency. On the one hand, if a mechanism is notrimder
tive then it is not very helpful in identifying good and baceats,
resulting in poor trading decisions and low overall efficignOn
the other hand, if a mechanism can be easily manipulated, the
many agents may choose to influence a mechanism to their-advan
tage, which in turn decreases overall efficiency as well. dal r
environments with risky transactions, there is likely togbenix-
ture of different kinds of agents. Some agents will be highigt-
worthy andcooperative likely to complete a transaction in good
faith. Some agents will be less trustworthy andlicious with a
greater probability of participating in an incomplete cafdulent
transaction. Depending on how costly manipulations aneesof
the malicious agents will acttrategicallyand manipulate a trust
mechanism to their advantage.

Previous research has primarily focused on a formal arsabfsi
the strategyproofness properties of different mechaniskiew-
ever, a formal instrument for measuring and comparing méor
tiveness was missing. In this paper, we propose a simpléaietr
measuring the informativeness of a trust mechanism, incbpe
from how this information is being used for making decisigms
the environment. This gives us a way to evaluate how wekchffit
mechanisms aggregate trust information. We then combirst-ex

The terminology is in fact used more or less interchangeably
the literature. Here we use “trust mechanisms” because wiéhes
concept of transitive trust.



ing transitive-trust mechanisms introducing neybrid transitive-
trust mechanisms, enabling a new continuum of tradeoffsdet
the competing desiderata of informativeness and strateg§ess.
This is desirable in order to make the tradeoff that is bestafo
given environment with a particular agent population. Weales
lish analytically that these hybrid mechanisms have inegtiate
strategyproofness properties and we show experimentediytiey
also have good informativeness properties. Ultimatelyyewer,
we are interested in the overall efficiency resulting from tise of
hybrid mechanisms. We study this in two different simuladee
mains (file-sharing with viruses, and website surfing). @Qsults
show that in some settings, hybrid mechanisms can outpefioe-
viously known mechanisms, with efficiency gains up to 5%.

1.2 Related Work

Many transitive-trust mechanisms have been introducethén t
literature (for a recent survey see Friedman et al. [8]). ot
well known mechanism is PageRank [10] originally used by @®o
to rank websites. However, PageRank was soon found to bé/high
susceptible to manipulation, and thus subsequent work tirasup
ily focused on solving the manipulability problem [6, 7, 13It-
man et al. [1] presented the first axiomatic approach to tiseggde
of trust mechanisms, providing systematic insight into dlesign
space. Guha et al. [9] present the first large-scale empgiady
on trust mechanisms using transitive trust networks. Sardi a
Resnick [11] study the dynamics of transitive trust meckasi in
environments with risky transactions, looking to limit themula-
tive effect of an attack by a powerful adversarial.

2. TRANSITIVE-TRUST MECHANISMS

We consider multi-agent systems where agents engage in risk
transactions with many other agents, but rarely have rapeat
actions with the same other agent. An agent who contacthanot
agent puts itself at risk in terms of whether the second agéht
complete the transaction correctly or not. A good outcoraddeo
a gain in utility by the first agent, a bad outcome a loss iritwtil

DEFINITION1 (AGENTMODEL). Each agent; has a (pri-
vate) typef; € [0, 1], which represents its goodness, or trustwor-
thiness. This is the probability that an agent will generatgood
outcome when participating in a transaction with anotheemaiy

By sharing their direct experiences via the trust mechanibm
agents can help each other identify and thus avoid bad agents

DEFINITION 2 (AGENTINFORMATION & REPORTY. Given
a set of agenty” = {v1,...,vn}, let V; denote the agents that
has direct trust informatiornt; about, wheret; : V; — [0, 1], i.e.,
ti(v;) is the trust agent; has in agenw;. Agentv; makes reports

(Vi, ;) to a transitive-trust mechanism. Agentis truthful if and
only if (Vi, t:) = (Vi, £2).

DEFINITION 3 (TRUSTGRAPH). AtrustgraphG = (V, E, w)
is a set of verticey” and directed edge&;, v;) € E,v;,v; € V.
Each edg€v;, v;) has an associated weight(v;, v;) € [0, 1].

In a trust graph, vertices are individual agents, and thehtei
of an edge(v;, v;) corresponds to the last claim thathas made
regarding its direct trust in agenf (see Figure 1(a) for a simple ex-
ample). To simplify notation we sometimes usg directly instead

If agentwv; has reported truthfully, we call the corresponding trust
graph aw;-truthful trust graph If all agents have reported truth-
fully, we call the corresponding trust graplrathful trust graph

DEFINITION4 (TRANSITIVE-TRUSTMECHANISM). LetGy
denote the set of trust graplis = (V, E,w) on V. A transitive-
trust mechanismV/ is a function that for every set of agents
and for every individual agent; € V mapsGy to a vector of
trust scores for all other agents; € V,v; # v;. More formally:
M :GyxV —[0,1]""'. EachM;(G,v;) denotes the trust score
assigned to agent; from the perspective af;. We letM (G, v;)
denote the vector of all trust scores from ageris perspective.

This allows for personalized trust mechanisms where thet tru
score assigned to some agentlepends on which agent's perspec-
tive v; # v; is adopted. This makes sense for environments where
it is reasonable to expect that | trust my own direct expessn
more than the reported experiences of other agents.

Ultimately, we care about the overall system efficiency. Ha t
experimental section, we measure the efficiency of a trushme
nism as the fraction of transactions by non-strategic agat are
successful. This obviously depends on the strategypresfaad
informativeness properties of the mechanism. The infoxaagss
of a mechanism is formally defined in Section 4.

2.1 Manipulations and Strategyproofness

Following earlier work, we consider two different classéma-
nipulations by strategic agents.

DEFINITION5  (MISREPORY). GiventrustgraphG = (V, E, w),
define the sefl_, = {(z,y) : (z,y) € E,z # v} (i.e., the set of
all edges inG that do not start av). A misreport strategy for agent
v € Visatuplec = (E,,w,) whereE, = {(v,u) : u € V}
andw, : E, — [0, 1]. Applying the strategy to G results in trust
graphG o =G = (V,E_, U E,,w") wherew’(e) = w(e) for
alle e E_,, andw’(e') = wy(e') forall &' € E,.

Please see Figure 1(b) for an example of a misreport attack.

DEFINITION 6  (SYBIL MANIPULATION ). Given atrustgraph
G = (V, E,w), a sybil manipulation for agent € V is a tuple
o = (S,Es,ws) whereS = {s1, ..., sm } is a set of sybil agents,
Es is a set of edge®s = {(z,y) : * € SU {v},y € VU S},
andws : Es — [0, 1] are the weights on the edgesify. Apply-
ing the sybil manipulatiow to G results in a modified trust graph
Glo=G = (VUS,EUEs,w'), wherew'(e) = w(e) for
e € E,andw’(e') = ws(e') fore’ € Es.

A sybil manipulation (introduced by Cheng and Friedman [6])
involves the creation of multiple fake nodes and associéikd
edges in the trust graph. Figure 1 (c) shows an example ofik syb
manipulation. Note that in general, an agent can manipalatest
mechanism via a combination of misreports and sybil maaipul
tions. For these combinations,| o is defined analogously.

We can now define appropriate concepts of strategyproafness
We use two different concepts, similar to the ones introduce
Cheng and Friedman [6]. The first one, rank-strategyprasine
compares the relative trust scores of agents. The secongaine-
strategyproofness, considers an agent’s absolute tros.sc

DEFINITION 7 (RANK-STRATEGYPROOBR. A transitive-trust
mechanism is rank-strategyproof if for amy-truthful trust graph
G = (V, E,w) wherev; € V, and for every strategy by nodev;
st.Glo =G, forall v; # v, forall vy # v; : M;(G,v;) <

of v;, v;. Atrust graph is constructed to correspond to agent reports p7, (@, v;) = Mi(G',v;) < Mi(G',v;), i.e., an agent cannot

as follows: for each vertex;, given repor'(V;, t}), create a directed
edge(v;,v;) € E for eachv; € V; and definau(vi, v;) = ;(v;).

increase its position in a rank-order from the perspectifeany
such agenv; # v;.
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Figure 1: (a) A simple trust graph with three agents (edge wejhts are omitted). (b) Agent 2 manipulated the trust graph bycutting
its outlink to agent 3, i.e., decreasing its trust report to 0 (c) Agent 2 manipulated the trust graph further by adding sybil agents.

DEFINITION 8 (VALUE-STRATEGYPROOR. A transitive-trust
mechanism is value-strategyproof if for amytruthful trust graph
G = (V, E,w) withv; € V, and for every strategy by nodev;
st.Glo =G forallv; #v;: M;(G,v;) > M;(G',v;), i.e., an
agent cannot increase its absolute trust score from thepaets/e
of any agenw; # v;.

Rank-strategyproofness is appropriate, for example, wdren
agent can choose from a list of trading partners and onlydhe
ative trust scores are important to identify the most trustworthy
agent. Value-strategyproofness is appropriate, for exX@myhen
agents adopt a threshold approach in deciding which otlettago
transact with; e.g., any agent with a trust score above shresti-
old may be acceptable. It is easy to show that neither of these
concepts dominates one another. For many applicationss\eaw
rank-strategyproofness seems a more natural requireimdrit,is
also harder to achieve.

2.2 Existing Transitive-Trust Mechanisms

We now review four transitive-trust mechanisms that hawenbe
introduced in this form or very similarly before. The trusbses
produced by the mechanisms are normalized to hj@,if.

DEFINITION 9 (PAGERANK [10]). Given a trust graphG =
(V, E,w), PageRank conducts a random walk from a random node
v; € V that at each step, with probability (for A € [0, 1)) follows
a random outlink with probability proportional to weight(v;, v;),
as a fraction of the total weight on all outlinks, and with pedil-
ity 1 — A jumps to another node with uniform probability. If the
random walk reaches a node with no outgoing links then PageR-
ank randomly jumps to another node in the trust graph with uni
form probability. The trust scord{; (G, v;) = 7(G, v;) of a node
v; is the same, irrespective of, and is given by the probability
m(G, v;) of being in nodey; in the stationary distribution of the
Markov process described by the random walk.

Some mechanisms use pre-trusted nodes in their algorithms.

This is reasonable for many domains, e.g., in P2P networks th
administrator of the mechanism might own some trusted s&rve

DEFINITION 10 (HITTINGTIME [13]). Given a trust graph
G, the hitting time of a node;, H(v;), is the number of steps
before a random walk oi first reachesv;. A hitting time trust
mechanism has a set of pre-trusted nodes, and after eaclstapge
the random walk jumps back to one of the pre-trusted nodds wit
some probabilityh. The random variable/ denotes the number of
time steps before the random walk performs a jump. The tooses
of nodev; is the probability that the random walk reachebefore
jumping, i.e.Vi : M;(G,v;) = Pr(H(v;) < J).

DEFINITION 11  (MAXFLOW MECHANISM [6]). Given a
trust graphG = (V, E,w) and nodes;,v; € V, let MF (v;, vj;)
denote the maximum flow from nodeto nodev;. The max-flow
transitive-trust mechanism sets; (G, v;) = MF (vs,v;).

DEFINITION 12 (SHORTESTPATH MECHANISM [3]).
Given a trust graphG = (V, E,w), define the trust graph
G' = (V.E,w') with w'(i,j) = 5. i.e. all edge weights
are flipped such that low trust scores lead to high edge wsight
G’. Now, letSPs/ (v;,v;) denote the length of the shortest path
between agents; alndvj in G’. The shortest-path mechanism sets
M]‘ (G, 'Uz') = m

Each of theses mechanisms makes a distinct tradeoff beiween
formativeness and strategyproofness. Previous reseasciiteady
established their strategyproofness properties: ShBd#sis best
being rank-strategyproof and value-strategyproof; MewFand
HittingTime are both value-strategyproof, and finally FRgek is
last with no formal strategyproofness properties (seeelahl

[ Mechanism| Rank-SP] Value-SP|

ShortestPathh  Yes Yes
MaxFlow No Yes
HittingTime No Yes
PageRank No No

Table 1: Strategyproofness of Existing Trust Mechanisms

We investigate the informativeness properties of all foecha-
nisms in Section 4. We find that the order of the mechanismnis wit
respect to informativeness is roughly reversed. This maitegive
sense: the more information a mechanism ignores when cemput
ing trust scores, the better its strategyproofness priegeout the
worse its informativeness properties. This illustrates tfade-off
we make when designing trust mechanisms.

3. HYBRID MECHANISMS

We now introduce the idea of a hybrid transitive-trust mecha
nism, which is defined as a linear combination of two mechmasis

DEFINITION 13 (HYBRID TRANSITIVE-TRUSTMECHANISMS).
Given transitive-trust mechanisms\/' and M?, we let
M(M"',M?) denote the a-hybrid of those mechanisms.
Given a trust graptG = (V, E,w) andv;,v; € V, let M} (G, v;)
denote the trust value af; from v;’s perspective undeis*, and
let M7 (G, v;) denote the trust value af; from v;’s perspective
under M?. The reputation ofv; from v;’s perspective under
MM, M?)is

M (G,vi) = (1 = a)M; (G, vi) + aMj (G, i)

For a hybrid mechanism/,, (M, M?) we will by convention
always combine two mechanisms in whi@id® is more strate-
gyproof thanl/2. Often times, but not alwayd/2 will be more in-
formative thanM*. Thus, asy is increased from 0 to 1, the oppor-
tunities for manipulation increase, but we also expect tleeha-
nism to become more informative, at least when no strategiots
are present. We will look for non-trivial hybrids (with< o < 1)
that have better efficiency than either extreme mechanism.



3.1 Strategyproofness of Hybrid Mechanisms

LEMMA 1. If mechanisms M! and M? are value-
strategyproof, thed/* (M*, M?) is value-strategyproof.

PrROOF If M* and M? are both value-strategyproof, then for
any v;-truthful trust graphG = (V, E, w) with v; € V, for ev-
ery strategys by nodev; s.t. G | o = G, for all v; # v;, we
haveMil(G7 Uj) > M}(levj) ande(G, Uj) > M?(G/7UJ')'
Thus, it follows that(1 — o) M} (G, v;) + aMZ (G, v;) > (1 —
QMG vj) + aMZ (G, v;), foranya € [0,1]. O

Unfortunately this does not hold true for the property ofk-an
strategyproofness.

LEMMA 2. If mechanismd@/* and M? are rank-strategyproof,
thenM“(M*, M?) is not necessarily rank-strategyproof.

PROOF. By counterexample. Assume a truthful trust graph with

two agents 1 and 2 and with only one edge from agent 1 to agent

We can now prove a corresponding corollary for specific hdybri
trust mechanisms:

CoROLLARY 1. Hybrid mechanisnd/* (Hitting, PageRankis
0.5a-value-strategyproof.

PROOF The HittingTime mechanism is value-
strategyproof [13]. Moreover, Bianchini et al. [4] establi
that PageRank i8.5-value-strategyproof. By Theorem 1, we have
that M “ (Hitting, PageRankis 0.5a-value-strategyproof. [

COROLLARY 2. Hybrid mechanism
M*(Max-Flow, PageRankis 0.5«-value-strategyproof.

COROLLARY 3. Hybrid mechanism\/ < (ShortestPageRank
is 0.5a-value-strategyproof.

ProOFE Max-Flow and Shortest-Path are both value-

2. M" always assigns a trust score of 1 to agent 2 and a trust strategyproof and thus Corollaries 2 and 3 also follow from

score of 0.2 to agent 1 (and all other agenfs))! is trivially rank-

strategyproof M ? always assigns a trust score of 1 to agent 1, and

assigns trust score 0.5 to agent 2 if an edge exists from dgent
to agent 2 and trust score 0 otherwiskl? is rank-strategyproof
because agent 1 is always the highest-ranked agent, antd Zagen
cannot affect the final ranking. Now, fer = 0.5, agent 1 has
trust value0.6 while agent 2 has trust value75. If agent 1 now
removes the link to agent 2, then agent 2’s trust value isfed/&o

Theorem 1. [

3.3 Rank-Strategyproofness Results

Establishing rank-strategyproofness properties for idyban-
sitive-trust mechanisms requires a more delicate argumeor
this, we introduce the following property:

DEFINITION 16  (UPWARDSVALUE-PRESERVANCE. A

0.5, and agent 1 becomes ranked higher than agent 2, thus provingiran-sitive-trust mechanism is upwards value-presenvfrigr any

that M (M*, M?) is not rank-strategyproof. ]

For the design of hybrid mechanisms, we adopt relaxed rotion
of strategyproofness (similar to concepts adopted by [2]).

DEFINITION 14  (e-VALUE-STRATEGYPROOFNES}) A
tran-sitive-trust mechanism isvalue-strategyproof foe > 0 if
for any v;-truthful trust graphG = (V, E, w) withv; € V and
for all manipulation strategies for v; givingG’ = G | o, for all
Vj ;é Vi, J\JZ(G’7 Uj) +e> MZ‘(G,,’UJ‘).

DEFINITION 15  (e-RANK-STRATEGYPROOFNES} A tran-
sitive-trust mechanism isrank-strategyproof foe > 0 if for any
v-truthful trust graphG = (V, E, w) with v; € V" and for all ma-
nipulation strategie for v; s.t.G' = G | o, forall v; # v;, vy €
Vv, J\JZ(G’7 Uj) +e< J\Jk(G’7 Uj) = ML'(G,7U]') < Mk(Gl,’Uj).

In words, are-value-strategyproof mechanism is one in which an
agent cannot increase its trust score by more thander any ma-
nipulation strategy and for any trust graph. Anank-strategyproof

trust graphG = (V, E, w), for anyw; € V, for every strategyr
by nodev; s.t. G | o = G, for all v; # v;, for all v, # v; we
haveMk(G, Uj) > Mi(G,'Uj) = Mk(G/,'Uj) > Mk(G,'Uj).

This property requires that an agent cannot decrease the tru
score of a higher ranked agent. Note that the ShortestPath-me
anism is easily seen to be upwards value-preserving; ifas a
lower trust score than,, from v;’s perspective, then the path from
v; to vy is shorter than then path fromy to v;; thus, v; cannot
be on the path between agemisandv;, and therefore); cannot
affectvy’s trust scoré.

THEOREM 2. If transitive-trust mechanisma/* and M? are
value-strategyproof and/! satisfies upwards value-preservance,
thenM>(M*, M?) is a-rank-strategyproof.

PROOFR We analyze the trust scores of agentsandv; from
any third agent’s perspective. To simplify notation, Jeft', M}
denote the trust scores of, v; underM" and letM;, M7 denote

mechanism is one in which an agent cannot overcome more than ahe trust scores unde¥/. Let M;*, M denote the trust scores
difference ofe in trust scores between itself and any other agent, underM,,. Furthermore, |eﬁi17 M}7W7Vf7 andM_,;ﬁM_j“ de-

whatever the trust graph and for any manipulation strategy.
3.2 Value-Strategyproofness Results

THEOREM 1. If transitive-trust mechanisma/* and M? are
1 andez-value-strategyproof respectively, thef® (M*, M?) is
((1 = a)e1 + ae2)-value-strategyproof.

PROOF Let M}, M? denote the trust scores of (as viewed
by some other agent) under mechanishi$ and M? whenw; is
truthful. Let M2 = (1 — a)M} + aM?. Let M, M} and M?
denote the trust scores aftgrhas performed manipulations. Then:

ME - MP =
(1= a) (M} — M}) + a(MZ — M})
< (1—wer+ aegg,

and we see that/“ is ((1 — av)e1 + ae2) -value-strategyproof. (]

note the analogous trust scores aftehas performed manipula-
tions. WLOG, assume that/; > M, i.e.,(1—a) M} +aM; >
(1 — a)M; + aM;. With this assumption, it impossible that both
M} < M} andM] < M;. Thus, we only need to consider the
following two cases:

Case 1: M} > M;j: BecauseM"' and M* are both value-
strategyproof, agent; cannot increase its own trust score, i.e.,

2However, not all rank-strategyproof mechanisms are upsvard
value-preserving. Consider a simple example with 2 agents
v1, v2. Consider the trust mechaniskd which assigns trust scores
0.1,0.2 to agentsv1, v2, respectively, unless the only edge in the
graph is the edgévi,v2) in which caseM assigns trust scores
0.2,0.4 to agentsvy,v2. Note thatve always has a higher trust
score tharv, so this mechanism is rank-strategyproof. However,
itis not upwards value-preserving: if we start out with apravith

the single edgév., v2), thenwv, can decrease the trust scorevef
from 0.4 to 0.2 by cutting its outlink(vy, v2).



Mg < Mj. BecauseM' is upwards value-preserving, agent
v; also cannot decrease’s trust score unded/'. However,
agentv; can decrease agent’s trust score undeM/?. But
M7 — M? < 1sinceM? < 1andM? > 0. So, we have
that M — M < oa. Putting all these arguments together we
getMp — My > My — M§ > M —a— Mj* > a—a = 0.
And thus,M®(M*, M?) is a-rank-strategyproof in case 1.
Case 2:M/} < Mj andM; > M;: Fora = 0ora = 1thereis

nothing to be shown. Fér < o < 1 we show thatV/{* — M7 > o
is impossible to begin with:

M7 — M}

=aM? +(1—a)M; — anQ - (1-a)M;

<at+(1—-a)M —(1—a)M]

=a—(1—-a)(M - M) <.
Thus,M“ is a-rank-strategyproof in case 2 as well]

COROLLARY 4. Hybrid mechanism\/*(ShortestMax-Flow)
is a-rank-strategyproof.

PrROOF ShortestPath and MaxFlow are value-strategyproof [3,
7]. Moreover, ShortestPath is upwards value-preservimgisTthe
corollary follows from Theorem 2. (1

4. INFORMATIVENESS

In this section we analyze the informativeness of the foistex
ing trust mechanisms as well as our new hybrids. A trust mecha
nism shall help agents to discriminate good from bad tragimt-
ners. Similar to ideas by Bolton et al. [5], we call a mechanis
informativeif it discriminates well between good and bad agents,
and non-informativeif it doesn’t. A perfectly informative mech-
anism would be one that is perfectly discriminative in thasse
that it has a strictly monotonic relationship between thesttscores
M;(G,v;) and the true agent typés. With limited information,
no mechanism can be perfectly informative and thus we want to
measure how close our mechanism comes to this goal. Thdaorre
tion between the true agent types and the trust scores a msgha
produces tells us how discriminative the mechanism is. Aloam
mechanism results in a correlation of 0. Assuming a linek-re
tionship, a perfectly discriminative mechanism would fegua
correlation of 1. Thus, all mechanisms that perform bettant

random have informativeness values between 0 and 1. We define

the informativeness of a mechanish on graphG as the corre-
lation between the true agent types and the trust scoresigedd
by mechanism\/. More formally, we offer the following natural
definition:

DEFINITION 17  (INFORMATIVENESS). Let©O_; denote the
(n — 1)-dimensional vector of all agents’ types except for agent
Let® = (©_1,0_5,...,0_,) denote the vector resulting from
combining all© _; vectors to a vector of dimensign—1)". Given
a trust graphG = (V, E,w), and transitive-trust mechanisii/,
let M (G) denote thgn — 1)™-dimensional vector of all agents’
trust scores from all other agents’ perspectives producgdvh
ie., M(G) = <M(G7 Ul)v M(G7 1)2)7 M(G7 1)3)7 R M(G7 'Un)>
We define the informativeness of mechanignon graphG as:

Inf(M,G) = correlation(©” , M(G))

i 22 (M(GL i) — M)(0; — 0)
o (n(n—1) —1)smse

)

where M and 6 are the sample means of the trust scores and the
agent typess s and sy are the sample standard deviations.

4.1 Experimental Set-up

It is apparent from the definition that the informativenefs o
mechanism is defined with respect to a particular trust gi@ph
Thus, to perform an informativeness measurement, we fikst ha
to specify howG is generated in our experiments. In this section,
we focus on a mechanism’s ability to aggregate data and do not
consider its strategyproofness. Thus, we will not consaleate-
gic agents. Also, we want to measure informativeness intige
from how the trust scores are being used by the agents when mak
ing decisions in the environment. Thus, we start our anshygth
an artificial experiment where a random trust graph is canstd
according to the following process.

We simulate a multi-agent system with 50 agents. Each agent’
type 6; is chosen uniformly at random frono, 1]. We limit the
number of interaction partners for each agent, which in neal
works is small relative to the total graph size. We use patame
« to denote the size of the “interaction set” for each agentthAt
beginning of the experiment, each agent’s interactionsselhdosen
randomly. We let our simulation run faertime steps. At each time
step, each agertpicks a random partner agepfrom its interac-
tion set. The outcome of the interaction betweeand j is good
with probability 6; and bad with probability — 6;. Every agent
keeps track of the total number of interactions and the nurabe
successful interactions with each partner agent. At theoéedch
time step, for each agent we set the edge weight of edgg ;)
equal to the fraction of successful interactiersad withj divided
by the total number of interactiondhad with;. After r time steps,
we stop the interactive part of the experiment and constuere-
sulting trust grapitz as the basis for the analysis. For each mecha-
nism M that we consider, for each agerand each agent+# i, we
compute the trust score¥; (G, v;). We then calculate the infor-
mativeness metric, i.e., the correlation between the meattypes
and the trust scores computed by the mechanfsms.

4.2 Informativeness of Existing Mechanisms

The informativeness metric is sensitive to the parametetiseo
trust graph generation process, in particular to the nurabgme
steps,r, and to the size of the interaciton sets, In Figure 2 we
present two graphs that show some patterns that are repatéen
for our experiments without strategic agents. For both laggape
plot the log of the number of time steps on the x-axis, andthe i
formativeness scores on the y-axis. Figure 2(a) showstsefarl
x = 5 and Figure 2(b) shows results fer= 50, i.e., here each
agent could interact with each other agent in the system.|ddie
end on Figure 2(a) holds for both graphs.

We see immediately that as the number of time steps increases
the informativeness scores increase for all mechanisnis.ig bx-
pected because over time each agent gets better and bfitaran
tion about the type of each agent in its interaction set. Nwethe
last data points in both graphs correspond to an infinite rmurab
time steps which we simulated by setting the edge weightalequ
the true agents’ types. It is interesting to note that all ma@ésms,
except for MaxFlow, reach informativeness of 1 whes- 50 and
T = oo. However, for practical purposes this is less relevant, be-
cause we generally only have little information available.

In both graphs, we clearly see that the shortest path mexhani
performs worst (except when = oo). This is expected and
nicely illustrates the trade-off between informativenassl strat-

Note that this way, the informativeness score is alreadgdas
50-49 = 2,450 trust score measurements. To remove hoise, we run
5 trials, generating 5 graphs with the same parametersadsirg

the number of trust scores t@, 250 before computing the correla-
tion.
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Figure 2: Informativeness experiment with 50 agents and uriorm type distribution. We vary the number of time steps 7.

egyproofness. The order of the other basic mechanisms i& muc
less clear. In general, PageRank and HittingTime are veryecl
together, which makes sense given that both mechanismsnuse s
ilar algorithms to compute trust scores. The MaxFlow meigdman
shows the largest variation in informativeness and is Qaletily
sensitive tok, the size of the interaction set. In Figure 2(a) where
x = 5, MaxFlow has the highest informativeness, while in Figure
2(b) wherex = 50, it has the second lowest informativeness. To
explore this effect, we ran additional experiments for maties

of x (not shown here). It turns out that an interesting cross-ove
effect happens at = 10: for x < 10, the MaxFlow algorithms
has informativeness as good as or better than PageRank &nd Hi
tingTime, fork > 15, MaxFlow has informativeness significantly
worse than PageRank and HittingTime.

4.3 Informativeness of Hybrid Mechanisms

We now analyze the informativeness of two hybrid mechanisms
M (Shortest, Hittingand M * (Shortest,PageRahkWe use these
hybrids because the trade-off is clear in this case: shqrtgb has
the best strategyproofness properties but the worst irfftiveness
properties. We have shown analytically in the last sectiat the
hybrids have intermediate strategyproofness propertidsie ex-
pected the same result for informativeness.

Thus, it is perhaps surprising that, for many settings, the
hybrids perform as well with respect to informativeness, or
even better, than HittingTime or PageRank. In Figure 2(a),
we see thatM *(Shortest,PageRahkas informativeness scores

i.e., both sources of information. A deeper analysis of éffisct
will be interesting to conduct in future research.

5. EFFICIENCY EXPERIMENTS

In this section we analyze the efficiency of hybrid mechasism
We would like to investigate whether hybrids with intermegei
informativeness and intermediate strategyproofnessepties can
achieve higher performance than any of the “pure" mechamism
We measure the efficiency of a trust mechanism as the thédinact
of transactions by non-strategic agents that are sucdedshte
this is no longer independent of how agents use trust scoresf-
ing in their environment. We consider two simulated domait$
combatting the spread of bad files (e.g., viruses or trojarafile-
sharing network (2) ranking website quality based on limdcttire.

5.1 Experimental Set-up

As before, we use 50 simulated agents. Agents are divided int
cooperative and malicious agents: cooperative agents tyaee
0; = 0.95, while malicious agents have types drawn uniformly
at random from[0, 0.5]. A subsety of the malicious agents are
also strategic, i.e, they also consider manipulating thst tmech-
anism to their benefft. We let~ denote the fraction of the total
agent population that is strategic. Properly simulatire llehav-
ior of strategic agents is difficult. We model strategic hataby
assuming a heterogenous fixed cost for manipulation (eoges
agents are more adept than others at hacking the P2P fileghari
software). Asx increases, the manipulability of the mechanism in-

that are as good or even higher than those of PageRank, andcreases linearly with, leading to higher rewards for manipulating

M= (Shortest, Hitting has scores that are consistently higher than
those of HittingTime. In contrast, in Figure 2(b), we seet thath
hybrids have intermediate informativeness, i.e., thermftiveness
scores ofM * (Shortest, Hitting lie between those of ShortestPath
and HittingTime, and the scores df “(Shortest,PageRahke be-
tween those of ShortestPath and PageRank. Further an@gsis
not shown here) shows that another interesting cross-diext e
happens: for large values &f both hybrids have intermediate in-
formativeness as we expected. But for small values,dhe in-
formativeness of the hybrids is as good or even better thanoth
HittingTime or PageRank respectively. At first sight, it muoter-
intuitive that a hybrid mechanism could have informativeneven
higher than any of its component mechanisms. A possibleagspl
tion is that both component mechanisms measure differgeicts
of the trust graph, and the hybrid benefits from both perspext

agents. Since agents will only manipulate if the benefit edse
their cost, we assume that the percentage of manipulatiagtsig
increases linearly witlx. For a manipulating agent, we determine
in each context the optimal “attack” on the trust mechanism.

Virus Distribution Experiment: Imagine a file-sharing network
with good and malicious agents. Malicious agents have besd fil
that are infected by viruses. A trust mechanism helps toragpa
users with good files from users with bad files. In our expenitse
we use 100 simulated agents, of which 80% are malicious. \We va
~v, i.e., the proportion of strategic agents, between 0 and0B2P

“Note that the strategic agents are owijling to considermanip-
ulating the trust mechanism. Whether they in fact performima
lations depends on how costly the manipulations are and haghhm
the agents can benefit from manipulating.
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Figure 3: Virus distribution experiment without strategic agents, varying the maximum outdegreex.

filesharing settings, the total number of agents in the systeoo
large for any single agent to track all interactions. We nhaklis
by limiting the number of maximum outgoing edges of all agent
the trust graph by = 3. This “memory set”is uniformly randomly
selected for each agent at the beginning of the simulation.

We initialize the system by constructing a sparse trust lgrap
Each agent randomly chooses another agefrom its memory
set, and lays down an edge with weight Ljteith probability 6.
We repeat this process until each agent has exactly oneingtgo
edge. We then start the experiment itself and run it for 16@ti
steps. Each time step, agenbtains a set of three randomly se-
lected agents drawn from the entire set of agents. With [mibtya
0.9, the agent uses the trust mechanism to select ggeith the
highest trust score; with probability 0.1 the agent sim@lests a
random agent. This-greedy selection policy encourages agents to
explore and discover agents outside their memory set. Qrise
selected, with probability;, agentj sends a good file (otherwise
it sends a bad file). After the interaction has taken placentg
makes a report to the trust mechanism, updating the weigit$ of
edge to agent to be the fraction of successful transactions over the
total number of transactions.

Strategic agents in this setting only employ misreportstias
becauseM., (Mshortest MHiting) IS robust against sybil manipula-
tions. By cutting all their outlinks they do not affect thewn
trust scores, but could lower the trust scores of agenterhakove
them, thus improving their relative rank.

Website Ranking Experiment: This experiment uses a trust
mechanism to rank websites according to their quality,ihglpeb
surfers differentiate between high quality and low quakgbsites.

sites and considers their trust scores. We use the threbhskt
selection rule: the surfer is willling to visit any websiteat has
a trust score higher than a certain threshold (which we s#teto
median trust score across all agents).

5.2 Efficiency without Strategic Agents

In Figure 3 we present efficiency and informativeness result
(averaged over 10 trial runs) for the virus distribution esiment.

In Figure 3(a), we plot the informativeness of the mechasism
the y-axis, this time varying the maximum out-degreen the x-
axis. We see that the overall pattern is similar to the one awe h
described in Section 4. The ShortestPath mechanism hastlowe
informativeness and MaxFlow has highest informativeneEse
mechanisms HittingTime and PageRank are close togethearand
slightly less informative than MaxFlow. We also see thattihe
hybrids M *(Shortest, Hitting and M * (Shortest, PageRahkave
intermediate informativeness.

Consider now Figure 3(b), where we plot overall efficiency on
the y-axis and vary the maximum out-degreen the x-axis. We
see that the ordering of the mechanisms is the same as ineFigur
3(a), except for the MaxFlow mechanism, which on average per
forms slightly worse than HittingTime and PageRank, eveuign
it had better informativeness. Thus, without strategicn&gand
with the exception of MaxFlow, the informativeness of a neech
nism seems to be a very good predictor of its efficiency. Wehav
already seen in Section 4 that the MaxFlow mechanism is \ery s
sitive to various parameter settings. A more detailed aimbyf the
properties of MaxFlow is subject to our ongoing research.

5.3 Efficiency with Strategic Agents

We assume that the set of surfers and the set of website owners We now analyze the efficiency of our hybrid mechanisms in the

coincides, i.e., each surfer has one pre-trusted websit haVe
80% malicious agents (low quality websites) and we varghe
proportion of strategic agents (website owners), betviesmmd0.8.

We limit each agent to interacting with a randomly chosen mem
ory set of sizex = 5. For each agent, for 10 time steps, we sam-
ple from that agent’s memory set and update the edge weights a
cording to an outcome of a simulated transaction. Strataggnts
(website ownders) employ the misreport manipulation as ageh
sybil manipulation (5 sybils) in the optimal star-shapetigra [4].

We leave the trust graph unchanged over the duration of the ex
periment. We run the experiment for 100 time steps. At each
timestep, each surfer is provided with five randomly sebeteb-

presence of strategic agents. In Figure 4(a) we displayebelts
for the virus distribution experiment, and in Figure 4(b3 tiesults
for the WebRank experiment. On the x-axis we plot the mixing
factora € [0, 1] and on the y-axis we plot efficiency.

We see that with 0% strategic agents, efficiency increasessil
monotonically as we move from ShortestPath to HittingTime o
PageRank. This is expected because ShortestPath is a wefyrun
mative mechanism and without strategic agents has no beoefit
the other mechanisms. However, the situation is differenémnw
strategic agents are present, i.e.,for 0.2. Now we see that for
a-values towards 1, the efficiency decreases significanthys &
also expected because HittingTime and PageRank are batbpsus
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Figure 4: Efficiency analysis for hybrid mechanisms with stategic agents, varying blend parameter.

tible to the manipulations performed by strategic agentstaos,

instead assume a model in which this cost-benefit analysiade

the more weight we give those mechanisms, the more suctessfuexplicit. In future work we will also consider the computatal re-

are the strategic agents at manipulating the hybrids.
The most important finding from these experiments is that ini
tially, the efficiency goes up as we increaseand the efficiency

quirements of the trust mechanisms. For practical apjpiest in-
formativeness and strategyproofness are important, kanyircase
it must be feasible to run the mechanisms on real-sized graph

peak in both cases does not occur for one of the base meclsanism

Instead, the efficiency peak in Figure 4(a) is around 0.5 with a
relative efficiency increase up to 2%. In Figure 4 the peakdstad

a = 0.02 with a relative efficiency increase up to 7%. Thus, when

strategic agents are present, the optimal hybrid mecharashieve
higher overall efficiency than either of the component maigdras.

6. CONCLUSION

In this paper, we have introduced hybrid transitive-trustchr
anisms, which allow for a continuum of design tradeoffs testw
existing point solutions in the literature. We have showalyti
cally that these hybrids have intermediate strategypessprop-
erties. We have presented a simple metric to measure infvena
ness of trust mechanisms and via simulations we found thaidy
mechanisms have intermediate or sometimes even bettemiafo
tiveness than any of their component mechanisms. Finadijave
performed efficiency experiments to study the overall ¢fééais-
ing hybrid mechanisms. Our experimental results suggestith
some domains it is possible to improve efficiency by blendiig
gether two mechanisms, making a tradeoff between infoueati
ness and strategyproofness that is optimal for a given ptipual of
agents. Note that the optimal depends on the agent population
and how costly it is for strategic agents to actually marapeithe
mechanism. Our current experimental methodology is deltieéy
simplistic: as we increase blend parameteérom 0 to 1, we also
increase the fraction of strategic agents that choose tapuiate.
This models a simple cost-benefit tradeoff. As a next stepwille

°Note that in Figure 4(b), foy = 0.6 and~y = 0.8, the efficiency
increases again as we move fram= 0.9 to o = 1. This happens
because atv = 0.9, the strategic agents affect the hybrid twice,

via ShortestPath and via PageRank. As we have seen in Figure 2

ShortestPath is particularly bad when it has little infotioa For
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