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ABSTRACT
Establishing trust amongst agents is of central importanceto the
development of well-functioning multi-agent systems. Trust (or
reputation) mechanisms can help by aggregating and sharingtrust
information between agents. Unfortunately these mechanisms can
often be manipulated by strategic agents. Existing mechanisms are
either very robust to manipulation (i.e., manipulations are not ben-
eficial for strategic agents), or they are very informative (i.e., good
at aggregating trust data), but never both. This paper explores this
trade-off between these competing desiderata. First, we introduce
a metric to evaluate the informativeness of existing trust mecha-
nisms. We then show analytically that trust mechanisms can be
combined to generate newhybrid mechanismswith intermediate
robustness properties. We establish through simulation that hybrid
mechanisms can achieve higher overall efficiency in environments
with risky transactions and mixtures of agent types (some coop-
erative, some malicious, and some strategic) than any previously
known mechanism.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics

General Terms
Algorithms, Design, Economics

Keywords
Trust, Reputation, Mechanism Design, Informativeness

1. INTRODUCTION
We often interact with anonymous parties over the Internet and

in many environments this can lead to fraudulent behavior. For ex-
ample, on e-commerce websites a seller might advertise a product
with false information, or in P2P networks a malicious user might
distribute a virus. Online, it is difficult to know whom to trust. In-
formation from other users with previous experience in the same
online system can help separate malicious from trustworthyusers
and incentivize all users to act cooperatively. On eBay for exam-
ple, user feedback about the quality of sellers and buyers isaggre-
gated. Research has shown that consumers take the aggregated in-

Cite as: Hybrid Transitive-Trust Mechanisms, Jie Tang, Sven Seuken,
David C. Parkes,Proc. of 9th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka,
Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto,Canada, pp.
XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

formation regarding a seller into account when purchasing products
[12]. Mechanisms that aggregate information and compute a score
for each agent are calledtrust mechanisms(or reputation mecha-
nisms).1 In this paper we focus on the design oftransitive-trust
mechanisms, i.e., we assume that if agent A trusts B, and B trusts
C, then A also trusts C to some degree.

1.1 Informativeness vs. Strategyproofness
We aim to design trust mechanisms that have goodinformative-

nessas well asstrategyproofnessproperties. A mechanism is in-
formative if it aggregates the available information well,such that
agents using it can successfully separate good from bad trading
partners. A mechanism is strategyproof if agents cannot improve
their utility in the system by manipulating the trust mechanism.
Strategyproofness is important here because we consider mecha-
nisms that must rely on information provided voluntarily bythe
agents and where the outcome of individual transactions cannot be
monitored centrally. Depending on the particular trust mechanism,
agents might be able to manipulate by spreading bad information
about other agents in the system, or by creating fake agents (sybils)
that spread good information about themselves.

Existing aggregation methods represent distinct tradeoffs between
robustness and informativeness. This can be problematic for overall
system efficiency. On the one hand, if a mechanism is not informa-
tive then it is not very helpful in identifying good and bad agents,
resulting in poor trading decisions and low overall efficiency. On
the other hand, if a mechanism can be easily manipulated, then
many agents may choose to influence a mechanism to their advan-
tage, which in turn decreases overall efficiency as well. In real
environments with risky transactions, there is likely to bea mix-
ture of different kinds of agents. Some agents will be highlytrust-
worthy andcooperative, likely to complete a transaction in good
faith. Some agents will be less trustworthy andmalicious, with a
greater probability of participating in an incomplete or fraudulent
transaction. Depending on how costly manipulations are, some of
the malicious agents will actstrategicallyand manipulate a trust
mechanism to their advantage.

Previous research has primarily focused on a formal analysis of
the strategyproofness properties of different mechanisms. How-
ever, a formal instrument for measuring and comparing informa-
tiveness was missing. In this paper, we propose a simple metric for
measuring the informativeness of a trust mechanism, independent
from how this information is being used for making decisionsin
the environment. This gives us a way to evaluate how well different
mechanisms aggregate trust information. We then combine exist-

1The terminology is in fact used more or less interchangeablyin
the literature. Here we use “trust mechanisms” because we use the
concept of transitive trust.



ing transitive-trust mechanisms introducing newhybrid transitive-
trust mechanisms, enabling a new continuum of tradeoffs between
the competing desiderata of informativeness and strategyproofness.
This is desirable in order to make the tradeoff that is best for a
given environment with a particular agent population. We estab-
lish analytically that these hybrid mechanisms have intermediate
strategyproofness properties and we show experimentally that they
also have good informativeness properties. Ultimately, however,
we are interested in the overall efficiency resulting from the use of
hybrid mechanisms. We study this in two different simulateddo-
mains (file-sharing with viruses, and website surfing). Our results
show that in some settings, hybrid mechanisms can outperform pre-
viously known mechanisms, with efficiency gains up to 5%.

1.2 Related Work
Many transitive-trust mechanisms have been introduced in the

literature (for a recent survey see Friedman et al. [8]). Themost
well known mechanism is PageRank [10] originally used by Google
to rank websites. However, PageRank was soon found to be highly
susceptible to manipulation, and thus subsequent work has primar-
ily focused on solving the manipulability problem [6, 7, 13]. Alt-
man et al. [1] presented the first axiomatic approach to the design
of trust mechanisms, providing systematic insight into thedesign
space. Guha et al. [9] present the first large-scale empirical study
on trust mechanisms using transitive trust networks. Sami and
Resnick [11] study the dynamics of transitive trust mechanisms in
environments with risky transactions, looking to limit thecumula-
tive effect of an attack by a powerful adversarial.

2. TRANSITIVE-TRUST MECHANISMS
We consider multi-agent systems where agents engage in risky

transactions with many other agents, but rarely have repeatinter-
actions with the same other agent. An agent who contacts another
agent puts itself at risk in terms of whether the second agentwill
complete the transaction correctly or not. A good outcome leads to
a gain in utility by the first agent, a bad outcome a loss in utility.

DEFINITION 1 (AGENT MODEL). Each agentvi has a (pri-
vate) typeθi ∈ [0, 1], which represents its goodness, or trustwor-
thiness. This is the probability that an agent will generatea good
outcome when participating in a transaction with another agent.

By sharing their direct experiences via the trust mechanism, the
agents can help each other identify and thus avoid bad agents.

DEFINITION 2 (AGENT INFORMATION & REPORTS). Given
a set of agentsV = {v1, ..., vn}, let Vi denote the agents thatvi

has direct trust informationti about, whereti : Vi → [0, 1], i.e.,
ti(vj) is the trust agentvi has in agentvj . Agentvi makes reports
(V̂i, t̂i) to a transitive-trust mechanism. Agentvi is truthful if and
only if (Vi, ti) = (V̂i, t̂i).

DEFINITION 3 (TRUST GRAPH). A trust graphG = (V, E, w)
is a set of verticesV and directed edges(vi, vj) ∈ E, vi, vj ∈ V .
Each edge(vi, vj) has an associated weightw(vi, vj) ∈ [0, 1].

In a trust graph, vertices are individual agents, and the weight
of an edge(vi, vj) corresponds to the last claim thatvi has made
regarding its direct trust in agentvj (see Figure 1(a) for a simple ex-
ample). To simplify notation we sometimes usei, j directly instead
of vi, vj . A trust graph is constructed to correspond to agent reports
as follows: for each vertexvi, given report(V̂i, t̂i), create a directed
edge(vi, vj) ∈ E for eachvj ∈ V̂i and definew(vi, vj) = t̂i(vj).

If agentvi has reported truthfully, we call the corresponding trust
graph avi-truthful trust graph. If all agents have reported truth-
fully, we call the corresponding trust graph atruthful trust graph.

DEFINITION 4 (TRANSITIVE-TRUSTMECHANISM). LetGV

denote the set of trust graphsG = (V, E, w) on V . A transitive-
trust mechanismM is a function that for every set of agentsV
and for every individual agentvi ∈ V mapsGV to a vector of
trust scores for all other agentsvj ∈ V, vj 6= vi. More formally:
M : GV ×V → [0, 1]n−1. EachMj(G, vi) denotes the trust score
assigned to agentvj from the perspective ofvi. We letM(G, vi)
denote the vector of all trust scores from agentvi’s perspective.

This allows for personalized trust mechanisms where the trust
score assigned to some agentvj depends on which agent’s perspec-
tive vi 6= vj is adopted. This makes sense for environments where
it is reasonable to expect that I trust my own direct experiences
more than the reported experiences of other agents.

Ultimately, we care about the overall system efficiency. In the
experimental section, we measure the efficiency of a trust mecha-
nism as the fraction of transactions by non-strategic agents that are
successful. This obviously depends on the strategyproofness and
informativeness properties of the mechanism. The informativeness
of a mechanism is formally defined in Section 4.

2.1 Manipulations and Strategyproofness
Following earlier work, we consider two different classes of ma-

nipulations by strategic agents.

DEFINITION 5 (MISREPORT). Given trust graphG = (V, E, w),
define the setE−v = {(x, y) : (x, y) ∈ E,x 6= v} (i.e., the set of
all edges inG that do not start atv). A misreport strategy for agent
v ∈ V is a tupleσ = (Ev, wv) whereEv = {(v, u) : u ∈ V }
andwv : Ev → [0, 1]. Applying the strategyσ to G results in trust
graphG↓σ = G′ = (V, E−v ∪ Ev, w′) wherew′(e) = w(e) for
all e ∈ E−v, andw′(e′) = wv(e′) for all e′ ∈ Ev.

Please see Figure 1(b) for an example of a misreport attack.

DEFINITION 6 (SYBIL MANIPULATION ). Given a trust graph
G = (V, E, w), a sybil manipulation for agentv ∈ V is a tuple
σ = (S, ES, wS) whereS = {s1, ..., sm} is a set of sybil agents,
ES is a set of edgesES = {(x, y) : x ∈ S ∪ {v}, y ∈ V ∪ S},
andwS : ES → [0, 1] are the weights on the edges inES . Apply-
ing the sybil manipulationσ to G results in a modified trust graph
G ↓ σ = G′ = (V ∪ S, E ∪ ES, w′), wherew′(e) = w(e) for
e ∈ E, andw′(e′) = wS(e′) for e′ ∈ ES .

A sybil manipulation (introduced by Cheng and Friedman [6])
involves the creation of multiple fake nodes and associatedfake
edges in the trust graph. Figure 1 (c) shows an example of a sybil
manipulation. Note that in general, an agent can manipulatea trust
mechanism via a combination of misreports and sybil manipula-
tions. For these combinations,G↓σ is defined analogously.

We can now define appropriate concepts of strategyproofness.
We use two different concepts, similar to the ones introduced in
Cheng and Friedman [6]. The first one, rank-strategyproofness,
compares the relative trust scores of agents. The second one, value-
strategyproofness, considers an agent’s absolute trust score.

DEFINITION 7 (RANK -STRATEGYPROOF). A transitive-trust
mechanism is rank-strategyproof if for anyvi-truthful trust graph
G = (V, E, w) wherevi ∈ V , and for every strategyσ by nodevi

s.t. G ↓ σ = G′, for all vj 6= vi, for all vk 6= vi : Mi(G, vj) <

Mk(G, vj) ⇒ Mi(G
′, vj) < Mk(G′, vj), i.e., an agent cannot

increase its position in a rank-order from the perspective of any
such agentvj 6= vi.
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Figure 1: (a) A simple trust graph with three agents (edge weights are omitted). (b) Agent 2 manipulated the trust graph bycutting
its outlink to agent 3, i.e., decreasing its trust report to 0. (c) Agent 2 manipulated the trust graph further by adding sybil agents.

DEFINITION 8 (VALUE -STRATEGYPROOF). A transitive-trust
mechanism is value-strategyproof if for anyvi-truthful trust graph
G = (V, E, w) with vi ∈ V , and for every strategyσ by nodevi

s.t.G↓σ = G′, for all vj 6= vi: Mi(G, vj) ≥ Mi(G
′, vj), i.e., an

agent cannot increase its absolute trust score from the perspective
of any agentvj 6= vi.

Rank-strategyproofness is appropriate, for example, whenan
agent can choose from a list of trading partners and only therel-
ative trust scores are important to identify the most trustworthy
agent. Value-strategyproofness is appropriate, for example, when
agents adopt a threshold approach in deciding which other agents to
transact with; e.g., any agent with a trust score above some thresh-
old may be acceptable. It is easy to show that neither of these
concepts dominates one another. For many applications, however,
rank-strategyproofness seems a more natural requirement,but it is
also harder to achieve.

2.2 Existing Transitive-Trust Mechanisms
We now review four transitive-trust mechanisms that have been

introduced in this form or very similarly before. The trust scores
produced by the mechanisms are normalized to be in[0, 1].

DEFINITION 9 (PAGERANK [10]). Given a trust graphG =
(V, E, w), PageRank conducts a random walk from a random node
vi ∈ V that at each step, with probabilityλ (for λ ∈ [0, 1)) follows
a random outlink with probability proportional to weightw(vi, vj),
as a fraction of the total weight on all outlinks, and with probabil-
ity 1 − λ jumps to another node with uniform probability. If the
random walk reaches a node with no outgoing links then PageR-
ank randomly jumps to another node in the trust graph with uni-
form probability. The trust scoreMj(G, vi) = π(G, vj) of a node
vj is the same, irrespective ofvi, and is given by the probability
π(G, vj) of being in nodevj in the stationary distribution of the
Markov process described by the random walk.

Some mechanisms use pre-trusted nodes in their algorithms.
This is reasonable for many domains, e.g., in P2P networks the
administrator of the mechanism might own some trusted servers.

DEFINITION 10 (HITTINGTIME [13]). Given a trust graph
G, the hitting time of a nodevj , H(vj), is the number of steps
before a random walk onG first reachesvj . A hitting time trust
mechanism has a set of pre-trusted nodes, and after each timestep,
the random walk jumps back to one of the pre-trusted nodes with
some probabilityλ. The random variableJ denotes the number of
time steps before the random walk performs a jump. The trust score
of nodevj is the probability that the random walk reachesv before
jumping, i.e.,∀i : Mj(G, vi) = Pr(H(vj) < J).

DEFINITION 11 (MAX FLOW MECHANISM [6]). Given a
trust graphG = (V, E, w) and nodesvi, vj ∈ V , let MF (vi, vj)
denote the maximum flow from nodevi to nodevj . The max-flow
transitive-trust mechanism setsMj(G, vi) = MF (vi, vj).

DEFINITION 12 (SHORTESTPATH MECHANISM [3]).
Given a trust graphG = (V, E, w), define the trust graph
G′ = (V, E, w′) with w′(i, j) = 1

w(i,j)
, i.e., all edge weights

are flipped such that low trust scores lead to high edge weights in
G′. Now, letSPG′(vi, vj) denote the length of the shortest path
between agentsvi andvj in G′. The shortest-path mechanism sets
Mj(G, vi) = 1

SP
G′ (vi,vj)

.

Each of theses mechanisms makes a distinct tradeoff betweenin-
formativeness and strategyproofness. Previous research has already
established their strategyproofness properties: ShortestPath is best
being rank-strategyproof and value-strategyproof; MaxFlow and
HittingTime are both value-strategyproof, and finally PageRank is
last with no formal strategyproofness properties (see Table 1).

Mechanism Rank-SP Value-SP

ShortestPath Yes Yes
MaxFlow No Yes

HittingTime No Yes
PageRank No No

Table 1: Strategyproofness of Existing Trust Mechanisms

We investigate the informativeness properties of all four mecha-
nisms in Section 4. We find that the order of the mechanisms with
respect to informativeness is roughly reversed. This makesintuitive
sense: the more information a mechanism ignores when comput-
ing trust scores, the better its strategyproofness properties but the
worse its informativeness properties. This illustrates the trade-off
we make when designing trust mechanisms.

3. HYBRID MECHANISMS
We now introduce the idea of a hybrid transitive-trust mecha-

nism, which is defined as a linear combination of two mechanisms.

DEFINITION 13 (HYBRID TRANSITIVE-TRUSTMECHANISMS).
Given transitive-trust mechanismsM1 and M2, we let
Mα(M1, M2) denote the α-hybrid of those mechanisms.
Given a trust graphG = (V, E, w) andvi, vj ∈ V , letM1

j (G, vi)

denote the trust value ofvj from vi’s perspective underM1, and
let M2

j (G, vi) denote the trust value ofvj from vi’s perspective
under M2. The reputation ofvj from vi’s perspective under
Mα(M1, M2) is

M
α
j (G, vi) = (1 − α)M1

j (G, vi) + αM
2
j (G, vi).

For a hybrid mechanismMα(M1, M2) we will by convention
always combine two mechanisms in whichM1 is more strate-
gyproof thanM2. Often times, but not always,M2 will be more in-
formative thanM1. Thus, asα is increased from 0 to 1, the oppor-
tunities for manipulation increase, but we also expect the mecha-
nism to become more informative, at least when no strategic agents
are present. We will look for non-trivial hybrids (with0 < α < 1)
that have better efficiency than either extreme mechanism.



3.1 Strategyproofness of Hybrid Mechanisms
LEMMA 1. If mechanisms M1 and M2 are value-

strategyproof, thenMα(M1, M2) is value-strategyproof.

PROOF. If M1 andM2 are both value-strategyproof, then for
any vi-truthful trust graphG = (V, E, w) with vi ∈ V , for ev-
ery strategyσ by nodevi s.t. G ↓ σ = G′, for all vj 6= vi, we
haveM1

i (G, vj) ≥ M1
i (G′, vj) andM2

i (G, vj) ≥ M2
i (G′, vj).

Thus, it follows that(1 − α)M1
i (G, vj) + αM2

i (G, vj) ≥ (1 −
α)M1

i (G′, vj) + αM2
i (G′, vj), for anyα ∈ [0, 1].

Unfortunately this does not hold true for the property of rank-
strategyproofness.

LEMMA 2. If mechanismsM1 andM2 are rank-strategyproof,
thenMα(M1, M2) is not necessarily rank-strategyproof.

PROOF. By counterexample. Assume a truthful trust graph with
two agents 1 and 2 and with only one edge from agent 1 to agent
2. M1 always assigns a trust score of 1 to agent 2 and a trust
score of 0.2 to agent 1 (and all other agents).M1 is trivially rank-
strategyproof.M2 always assigns a trust score of 1 to agent 1, and
assigns trust score 0.5 to agent 2 if an edge exists from agent1
to agent 2 and trust score 0 otherwise.M2 is rank-strategyproof
because agent 1 is always the highest-ranked agent, and agent 2
cannot affect the final ranking. Now, forα = 0.5, agent 1 has
trust value0.6 while agent 2 has trust value0.75. If agent 1 now
removes the link to agent 2, then agent 2’s trust value is lowered to
0.5, and agent 1 becomes ranked higher than agent 2, thus proving
thatMα(M1, M2) is not rank-strategyproof.

For the design of hybrid mechanisms, we adopt relaxed notions
of strategyproofness (similar to concepts adopted by [2]).

DEFINITION 14 (ε-VALUE -STRATEGYPROOFNESS). A
tran-sitive-trust mechanism isε-value-strategyproof forε > 0 if
for any vi-truthful trust graphG = (V, E, w) with vi ∈ V and
for all manipulation strategiesσ for vi giving G′ = G ↓σ, for all
vj 6= vi, Mi(G, vj) + ε ≥ Mi(G

′, vj).

DEFINITION 15 (ε-RANK -STRATEGYPROOFNESS). A tran-
sitive-trust mechanism isε-rank-strategyproof forε > 0 if for any
vi-truthful trust graphG = (V, E, w) with vi ∈ V and for all ma-
nipulation strategiesσ for vi s.t.G′ = G↓σ, for all vj 6= vi, vk ∈
V , Mi(G, vj) + ε ≤ Mk(G, vj) ⇒ Mi(G

′, vj) ≤ Mk(G′, vj).

In words, anε-value-strategyproof mechanism is one in which an
agent cannot increase its trust score by more thanε under any ma-
nipulation strategy and for any trust graph. Anε-rank-strategyproof
mechanism is one in which an agent cannot overcome more than a
difference ofε in trust scores between itself and any other agent,
whatever the trust graph and for any manipulation strategy.

3.2 Value-Strategyproofness Results

THEOREM 1. If transitive-trust mechanismsM1 and M2 are
ε1 andε2-value-strategyproof respectively, thenMα(M1, M2) is
(

(1 − α)ε1 + αε2

)

-value-strategyproof.

PROOF. Let M1
i , M2

i denote the trust scores ofvi (as viewed
by some other agent) under mechanismsM1 andM2 whenvi is
truthful. Let Mα

i = (1 − α)M1
i + αM2

i . Let Mα
i , M1

i andM2
i

denote the trust scores aftervi has performed manipulations. Then:

Mα
i − M

α
i =

(1 − α)(M1
i − M

1
i ) + α(M2

i − M
2
i )

≤ (1 − α)ε1 + αε2,

and we see thatMα is
(

(1−α)ε1+αε2

)

-value-strategyproof.

We can now prove a corresponding corollary for specific hybrid
trust mechanisms:

COROLLARY 1. Hybrid mechanismMα(Hitting, PageRank) is
0.5α-value-strategyproof.

PROOF. The HittingTime mechanism is value-
strategyproof [13]. Moreover, Bianchini et al. [4] establish
that PageRank is0.5-value-strategyproof. By Theorem 1, we have
thatMα(Hitting, PageRank) is 0.5α-value-strategyproof.

COROLLARY 2. Hybrid mechanism
Mα(Max-Flow, PageRank) is 0.5α-value-strategyproof.

COROLLARY 3. Hybrid mechanismMα(Shortest, PageRank)
is 0.5α-value-strategyproof.

PROOF. Max-Flow and Shortest-Path are both value-
strategyproof and thus Corollaries 2 and 3 also follow from
Theorem 1.

3.3 Rank-Strategyproofness Results
Establishing rank-strategyproofness properties for hybrid tran-

sitive-trust mechanisms requires a more delicate argument. For
this, we introduce the following property:

DEFINITION 16 (UPWARDSVALUE -PRESERVANCE). A
tran-sitive-trust mechanism is upwards value-preservingif for any
trust graphG = (V, E, w), for anyvi ∈ V , for every strategyσ
by nodevi s.t. G ↓ σ = G′, for all vj 6= vi, for all vk 6= vi we
haveMk(G, vj) > Mi(G, vj) ⇒ Mk(G′, vj) ≥ Mk(G, vj).

This property requires that an agent cannot decrease the trust
score of a higher ranked agent. Note that the ShortestPath mech-
anism is easily seen to be upwards value-preserving: ifvi has a
lower trust score thanvk from vj ’s perspective, then the path from
vj to vk is shorter than then path fromvj to vi; thus,vi cannot
be on the path between agentsvk andvj , and thereforevi cannot
affectvk ’s trust score.2

THEOREM 2. If transitive-trust mechanismsM1 and M2 are
value-strategyproof andM1 satisfies upwards value-preservance,
thenMα(M1, M2) is α-rank-strategyproof.

PROOF. We analyze the trust scores of agentsvi andvj from
any third agent’s perspective. To simplify notation, letM1

i , M1
j

denote the trust scores ofvi, vj underM1 and letM2
i , M2

j denote
the trust scores underM2. Let Mα

i , Mα
j denote the trust scores

underMα. Furthermore, letM1
i , M1

j , M2
i , M2

j , andMα
i , Mα

j de-
note the analogous trust scores aftervi has performed manipula-
tions. WLOG, assume thatMα

i > Mα
j , i.e.,(1−α)M1

i +αM2
i >

(1 − α)M1
j + αM2

j . With this assumption, it impossible that both
M1

i < M1
j andM2

i < M2
j . Thus, we only need to consider the

following two cases:
Case 1: M1

i > M1
j : BecauseM1 and M2 are both value-

strategyproof, agentvj cannot increase its own trust score, i.e.,

2However, not all rank-strategyproof mechanisms are upwards
value-preserving. Consider a simple example with 2 agents
v1, v2. Consider the trust mechanismM which assigns trust scores
0.1, 0.2 to agentsv1, v2, respectively, unless the only edge in the
graph is the edge(v1, v2) in which caseM assigns trust scores
0.2, 0.4 to agentsv1, v2. Note thatv2 always has a higher trust
score thanv1, so this mechanism is rank-strategyproof. However,
it is not upwards value-preserving: if we start out with a graph with
the single edge(v1, v2), thenv1 can decrease the trust score ofv2

from 0.4 to 0.2 by cutting its outlink(v1, v2).



Mα
j ≤ Mα

j . BecauseM1 is upwards value-preserving, agent
vj also cannot decreasevi’s trust score underM1. However,
agent vj can decrease agentvi’s trust score underM2. But
M2

i − M2
i ≤ 1 sinceM2

i ≤ 1 and M2
i ≥ 0. So, we have

that Mα
i − Mα

i ≤ α. Putting all these arguments together we
get:Mα

i − Mα
j ≥ Mα

i − Mα
j ≥ Mα

i − α − Mα
j ≥ α − α = 0.

And thus,Mα(M1, M2) is α-rank-strategyproof in case 1.
Case 2:M1

i < M1
j andM2

i > M2
j : Forα = 0 orα = 1 there is

nothing to be shown. For0 < α < 1 we show thatMα
i −Mα

j ≥ α

is impossible to begin with:

M
α
i − M

α
j

= αM
2
i + (1 − α)M1

i − αM
2
j − (1 − α)M1

j

≤ α + (1 − α)M1
i − (1 − α)M1

j

= α − (1 − α)(M1
j − M

1
i ) < α.

Thus,Mα is α-rank-strategyproof in case 2 as well.

COROLLARY 4. Hybrid mechanismMα(Shortest, Max-Flow)
is α-rank-strategyproof.

PROOF. ShortestPath and MaxFlow are value-strategyproof [3,
7]. Moreover, ShortestPath is upwards value-preserving. Thus, the
corollary follows from Theorem 2.

4. INFORMATIVENESS
In this section we analyze the informativeness of the four exist-

ing trust mechanisms as well as our new hybrids. A trust mecha-
nism shall help agents to discriminate good from bad tradingpart-
ners. Similar to ideas by Bolton et al. [5], we call a mechanism
informativeif it discriminates well between good and bad agents,
andnon-informativeif it doesn’t. A perfectly informative mech-
anism would be one that is perfectly discriminative in the sense
that it has a strictly monotonic relationship between the trust scores
Mj(G, vi) and the true agent typesθj . With limited information,
no mechanism can be perfectly informative and thus we want to
measure how close our mechanism comes to this goal. The correla-
tion between the true agent types and the trust scores a mechanism
produces tells us how discriminative the mechanism is. A random
mechanism results in a correlation of 0. Assuming a linear rela-
tionship, a perfectly discriminative mechanism would result in a
correlation of 1. Thus, all mechanisms that perform better than
random have informativeness values between 0 and 1. We define
the informativeness of a mechanismM on graphG as the corre-
lation between the true agent types and the trust scores produced
by mechanismM . More formally, we offer the following natural
definition:

DEFINITION 17 (INFORMATIVENESS). LetΘ−i denote the
(n − 1)-dimensional vector of all agents’ types except for agenti.
Let Θn

− = 〈Θ−1, Θ−2, ..., Θ−n〉 denote the vector resulting from
combining allΘ−i vectors to a vector of dimension(n−1)n. Given
a trust graphG = (V, E, w), and transitive-trust mechanismM ,
let M(G) denote the(n − 1)n-dimensional vector of all agents’
trust scores from all other agents’ perspectives produced by M ,
i.e., M(G) = 〈M(G, v1), M(G, v2), M(G, v3), ..., M(G, vn)〉.
We define the informativeness of mechanismM on graphG as:

Inf (M, G) = correlation(Θn
−, M(G))

=

∑n

i=1

∑

j 6=i
(Mj(G, vi) − M̃)(θj − θ̃)

(n(n − 1) − 1)sMsθ

,

whereM̃ and θ̃ are the sample means of the trust scores and the
agent types;sM andsθ are the sample standard deviations.

4.1 Experimental Set-up
It is apparent from the definition that the informativeness of a

mechanism is defined with respect to a particular trust graphG.
Thus, to perform an informativeness measurement, we first have
to specify howG is generated in our experiments. In this section,
we focus on a mechanism’s ability to aggregate data and do not
consider its strategyproofness. Thus, we will not considerstrate-
gic agents. Also, we want to measure informativeness independent
from how the trust scores are being used by the agents when mak-
ing decisions in the environment. Thus, we start our analysis with
an artificial experiment where a random trust graph is constructed
according to the following process.

We simulate a multi-agent system with 50 agents. Each agent’s
type θi is chosen uniformly at random from[0, 1]. We limit the
number of interaction partners for each agent, which in realnet-
works is small relative to the total graph size. We use parameter
κ to denote the size of the “interaction set” for each agent. Atthe
beginning of the experiment, each agent’s interaction set is chosen
randomly. We let our simulation run forτ time steps. At each time
step, each agenti picks a random partner agentj from its interac-
tion set. The outcome of the interaction betweeni andj is good
with probability θj and bad with probability1 − θj . Every agent
keeps track of the total number of interactions and the number of
successful interactions with each partner agent. At the endof each
time step, for each agenti, we set the edge weight of edge(i, j)
equal to the fraction of successful interactionsi had withj divided
by the total number of interactionsi had withj. After τ time steps,
we stop the interactive part of the experiment and consider the re-
sulting trust graphG as the basis for the analysis. For each mecha-
nismM that we consider, for each agenti and each agentj 6= i, we
compute the trust scoresMj(G, vi). We then calculate the infor-
mativeness metric, i.e., the correlation between the true agent types
and the trust scores computed by the mechanisms.3

4.2 Informativeness of Existing Mechanisms
The informativeness metric is sensitive to the parameters of the

trust graph generation process, in particular to the numberof time
steps,τ , and to the size of the interaciton sets,κ. In Figure 2 we
present two graphs that show some patterns that are representative
for our experiments without strategic agents. For both graphs, we
plot the log of the number of time steps on the x-axis, and the in-
formativeness scores on the y-axis. Figure 2(a) shows results for
κ = 5 and Figure 2(b) shows results forκ = 50, i.e., here each
agent could interact with each other agent in the system. Theleg-
end on Figure 2(a) holds for both graphs.

We see immediately that as the number of time steps increases,
the informativeness scores increase for all mechanisms. This is ex-
pected because over time each agent gets better and better informa-
tion about the type of each agent in its interaction set. Notethat the
last data points in both graphs correspond to an infinite number of
time steps which we simulated by setting the edge weights equal to
the true agents’ types. It is interesting to note that all mechanisms,
except for MaxFlow, reach informativeness of 1 whenκ = 50 and
τ = ∞. However, for practical purposes this is less relevant, be-
cause we generally only have little information available.

In both graphs, we clearly see that the shortest path mechanism
performs worst (except whenτ = ∞). This is expected and
nicely illustrates the trade-off between informativenessand strat-

3Note that this way, the informativeness score is already based on
50·49 = 2, 450 trust score measurements. To remove noise, we run
5 trials, generating 5 graphs with the same parameters, increasing
the number of trust scores to12, 250 before computing the correla-
tion.
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(a) Size of interaction set:κ = 5 (b) Size of interaction set:κ = 50

Figure 2: Informativeness experiment with 50 agents and uniform type distribution. We vary the number of time steps τ .

egyproofness. The order of the other basic mechanisms is much
less clear. In general, PageRank and HittingTime are very close
together, which makes sense given that both mechanisms use sim-
ilar algorithms to compute trust scores. The MaxFlow mechanism
shows the largest variation in informativeness and is particularly
sensitive toκ, the size of the interaction set. In Figure 2(a) where
κ = 5, MaxFlow has the highest informativeness, while in Figure
2(b) whereκ = 50, it has the second lowest informativeness. To
explore this effect, we ran additional experiments for morevalues
of κ (not shown here). It turns out that an interesting cross-over
effect happens atκ = 10: for κ ≤ 10, the MaxFlow algorithms
has informativeness as good as or better than PageRank and Hit-
tingTime, forκ ≥ 15, MaxFlow has informativeness significantly
worse than PageRank and HittingTime.

4.3 Informativeness of Hybrid Mechanisms
We now analyze the informativeness of two hybrid mechanisms:

Mα(Shortest, Hitting) andMα(Shortest,PageRank). We use these
hybrids because the trade-off is clear in this case: shortest path has
the best strategyproofness properties but the worst informativeness
properties. We have shown analytically in the last section that the
hybrids have intermediate strategyproofness properties and we ex-
pected the same result for informativeness.

Thus, it is perhaps surprising that, for many settings, the
hybrids perform as well with respect to informativeness, or
even better, than HittingTime or PageRank. In Figure 2(a),
we see thatMα(Shortest,PageRank) has informativeness scores
that are as good or even higher than those of PageRank, and
Mα(Shortest, Hitting) has scores that are consistently higher than
those of HittingTime. In contrast, in Figure 2(b), we see that both
hybrids have intermediate informativeness, i.e., the informativeness
scores ofMα(Shortest, Hitting) lie between those of ShortestPath
and HittingTime, and the scores ofMα(Shortest,PageRank) lie be-
tween those of ShortestPath and PageRank. Further analysis(data
not shown here) shows that another interesting cross-over effect
happens: for large values ofκ, both hybrids have intermediate in-
formativeness as we expected. But for small values ofκ, the in-
formativeness of the hybrids is as good or even better than that of
HittingTime or PageRank respectively. At first sight, it is counter-
intuitive that a hybrid mechanism could have informativeness even
higher than any of its component mechanisms. A possible explana-
tion is that both component mechanisms measure different aspects
of the trust graph, and the hybrid benefits from both perspectives,

i.e., both sources of information. A deeper analysis of thiseffect
will be interesting to conduct in future research.

5. EFFICIENCY EXPERIMENTS
In this section we analyze the efficiency of hybrid mechanisms.

We would like to investigate whether hybrids with intermediate
informativeness and intermediate strategyproofness properties can
achieve higher performance than any of the “pure" mechanisms.
We measure the efficiency of a trust mechanism as the the fraction
of transactions by non-strategic agents that are successful. Note
this is no longer independent of how agents use trust scores for act-
ing in their environment. We consider two simulated domains: (1)
combatting the spread of bad files (e.g., viruses or trojans)in a file-
sharing network (2) ranking website quality based on link structure.

5.1 Experimental Set-up
As before, we use 50 simulated agents. Agents are divided into

cooperative and malicious agents: cooperative agents havetype
θi = 0.95, while malicious agents have types drawn uniformly
at random from[0, 0.5]. A subsetγ of the malicious agents are
also strategic, i.e, they also consider manipulating the trust mech-
anism to their benefit.4 We let γ denote the fraction of the total
agent population that is strategic. Properly simulating the behav-
ior of strategic agents is difficult. We model strategic behavior by
assuming a heterogenous fixed cost for manipulation (e.g., some
agents are more adept than others at hacking the P2P filesharing
software). Asα increases, the manipulability of the mechanism in-
creases linearly withα, leading to higher rewards for manipulating
agents. Since agents will only manipulate if the benefit exceeds
their cost, we assume that the percentage of manipulating agents
increases linearly withα. For a manipulating agent, we determine
in each context the optimal “attack" on the trust mechanism.

Virus Distribution Experiment: Imagine a file-sharing network
with good and malicious agents. Malicious agents have bad files
that are infected by viruses. A trust mechanism helps to separate
users with good files from users with bad files. In our experiments
we use 100 simulated agents, of which 80% are malicious. We vary
γ, i.e., the proportion of strategic agents, between 0 and 0.8. In P2P

4Note that the strategic agents are onlywilling to considermanip-
ulating the trust mechanism. Whether they in fact perform manipu-
lations depends on how costly the manipulations are and how much
the agents can benefit from manipulating.
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Figure 3: Virus distribution experiment without strategic agents, varying the maximum outdegreeκ.

filesharing settings, the total number of agents in the system is too
large for any single agent to track all interactions. We model this
by limiting the number of maximum outgoing edges of all agents in
the trust graph byκ = 3. This “memory set” is uniformly randomly
selected for each agent at the beginning of the simulation.

We initialize the system by constructing a sparse trust graph.
Each agent randomly chooses another agentj from its memory
set, and lays down an edge with weight 1 toj with probabilityθj .
We repeat this process until each agent has exactly one outgoing
edge. We then start the experiment itself and run it for 100 time
steps. Each time step, agenti obtains a set of three randomly se-
lected agents drawn from the entire set of agents. With probability
0.9, the agent uses the trust mechanism to select agentj with the
highest trust score; with probability 0.1 the agent simply selects a
random agent. Thisǫ-greedy selection policy encourages agents to
explore and discover agents outside their memory set. Oncej is
selected, with probabilityθj , agentj sends a good file (otherwise
it sends a bad file). After the interaction has taken place, agent i
makes a report to the trust mechanism, updating the weight ofits
edge to agentj to be the fraction of successful transactions over the
total number of transactions.

Strategic agents in this setting only employ misreport strategies
becauseMα(MShortest, MHitting) is robust against sybil manipula-
tions. By cutting all their outlinks they do not affect theirown
trust scores, but could lower the trust scores of agents ranked above
them, thus improving their relative rank.

Website Ranking Experiment: This experiment uses a trust
mechanism to rank websites according to their quality, helping web
surfers differentiate between high quality and low qualitywebsites.
We assume that the set of surfers and the set of website owners
coincides, i.e., each surfer has one pre-trusted website. We have
80% malicious agents (low quality websites) and we varyγ, the
proportion of strategic agents (website owners), between0 and0.8.

We limit each agent to interacting with a randomly chosen mem-
ory set of sizeκ = 5. For each agent, for 10 time steps, we sam-
ple from that agent’s memory set and update the edge weights ac-
cording to an outcome of a simulated transaction. Strategicagents
(website ownders) employ the misreport manipulation as well as a
sybil manipulation (5 sybils) in the optimal star-shaped pattern [4].

We leave the trust graph unchanged over the duration of the ex-
periment. We run the experiment for 100 time steps. At each
timestep, each surfer is provided with five randomly selected web-

sites and considers their trust scores. We use the threshold-based
selection rule: the surfer is willling to visit any website that has
a trust score higher than a certain threshold (which we set tothe
median trust score across all agents).

5.2 Efficiency without Strategic Agents
In Figure 3 we present efficiency and informativeness results

(averaged over 10 trial runs) for the virus distribution experiment.
In Figure 3(a), we plot the informativeness of the mechanisms on
the y-axis, this time varying the maximum out-degreeκ on the x-
axis. We see that the overall pattern is similar to the one we have
described in Section 4. The ShortestPath mechanism has lowest
informativeness and MaxFlow has highest informativeness.The
mechanisms HittingTime and PageRank are close together andare
slightly less informative than MaxFlow. We also see that thetwo
hybridsMα(Shortest, Hitting) andMα(Shortest, PageRank) have
intermediate informativeness.

Consider now Figure 3(b), where we plot overall efficiency on
the y-axis and vary the maximum out-degreeκ on the x-axis. We
see that the ordering of the mechanisms is the same as in Figure
3(a), except for the MaxFlow mechanism, which on average per-
forms slightly worse than HittingTime and PageRank, even though
it had better informativeness. Thus, without strategic agents and
with the exception of MaxFlow, the informativeness of a mecha-
nism seems to be a very good predictor of its efficiency. We have
already seen in Section 4 that the MaxFlow mechanism is very sen-
sitive to various parameter settings. A more detailed analysis of the
properties of MaxFlow is subject to our ongoing research.

5.3 Efficiency with Strategic Agents
We now analyze the efficiency of our hybrid mechanisms in the

presence of strategic agents. In Figure 4(a) we display the results
for the virus distribution experiment, and in Figure 4(b) the results
for the WebRank experiment. On the x-axis we plot the mixing
factorα ∈ [0, 1] and on the y-axis we plot efficiency.

We see that with 0% strategic agents, efficiency increases almost
monotonically as we move from ShortestPath to HittingTime or
PageRank. This is expected because ShortestPath is a very uninfor-
mative mechanism and without strategic agents has no benefits over
the other mechanisms. However, the situation is different when
strategic agents are present, i.e., forγ ≥ 0.2. Now we see that for
α-values towards 1, the efficiency decreases significantly. This is
also expected because HittingTime and PageRank are both suscep-
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Figure 4: Efficiency analysis for hybrid mechanisms with strategic agents, varying blend parameterα.

tible to the manipulations performed by strategic agents and thus,
the more weight we give those mechanisms, the more successful
are the strategic agents at manipulating the hybrids.5

The most important finding from these experiments is that ini-
tially, the efficiency goes up as we increaseα and the efficiency
peak in both cases does not occur for one of the base mechanisms.
Instead, the efficiency peak in Figure 4(a) is aroundα = 0.5 with a
relative efficiency increase up to 2%. In Figure 4 the peak is around
α = 0.02 with a relative efficiency increase up to 7%. Thus, when
strategic agents are present, the optimal hybrid mechanisms achieve
higher overall efficiency than either of the component mechanisms.

6. CONCLUSION
In this paper, we have introduced hybrid transitive-trust mech-

anisms, which allow for a continuum of design tradeoffs between
existing point solutions in the literature. We have shown analyti-
cally that these hybrids have intermediate strategyproofness prop-
erties. We have presented a simple metric to measure informative-
ness of trust mechanisms and via simulations we found that hybrid
mechanisms have intermediate or sometimes even better informa-
tiveness than any of their component mechanisms. Finally, we have
performed efficiency experiments to study the overall effect of us-
ing hybrid mechanisms. Our experimental results suggest that in
some domains it is possible to improve efficiency by blendingto-
gether two mechanisms, making a tradeoff between informative-
ness and strategyproofness that is optimal for a given population of
agents. Note that the optimalα depends on the agent population
and how costly it is for strategic agents to actually manipulate the
mechanism. Our current experimental methodology is deliberately
simplistic: as we increase blend parameterα from 0 to 1, we also
increase the fraction of strategic agents that choose to manipulate.
This models a simple cost-benefit tradeoff. As a next step, wewill

5Note that in Figure 4(b), forγ = 0.6 andγ = 0.8, the efficiency
increases again as we move fromα = 0.9 to α = 1. This happens
because atα = 0.9, the strategic agents affect the hybrid twice,
via ShortestPath and via PageRank. As we have seen in Figure 2,
ShortestPath is particularly bad when it has little information. For
α = 0.9, the strategic agents cannot influence their trust scores
under ShortestPath, but the mechanism still stuffers significantly
from the missing information due to many misreport attacks.Close
to α = 1, ShortestPath loses effect, and as we have seen in Figure
2, PageRank is significantly better at coping with little information
in the trust graph which explains the efficiency increase at the end.

instead assume a model in which this cost-benefit analysis ismade
explicit. In future work we will also consider the computational re-
quirements of the trust mechanisms. For practical applications, in-
formativeness and strategyproofness are important, but inany case
it must be feasible to run the mechanisms on real-sized graphs.
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