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•Robotics tasks often in-
volve specifying complex
trajectories
– Ex: flying a stall turn

with a helicopter
•Goal: Learn representa-

tions of difficult maneu-
vers that we can query to
obtain novel trajectories.

Introduction

•Hard to specify maneu-
vers in high dimensional
spaces
•Many robotics platforms

cannot be accurately
modeled through all
operating regimes.

Challenges

•Leverage (suboptimal)
expert demonstrations to
learn target trajectories
•Learn dynamics model

locally tuned for specific
maneuver.
•Extend current state of

the art in helicopter aer-
obatics: A. Coates, P.
Abbeel, A. Ng, ICML
2008 [1].
– Can fly aggressive heli-

copter maneuvers with
few demonstrations.

•Specify waypoints to
generate novel instances
of maneuver

Solution Idea

Input: Maneuver type, target
waypoints
Output: Maneuver that
passes through waypoints
1. Gather demonstrations
2. Initialize target trajectory
3. Repeat:
3a. Time-alignment
3b. Trajectory inference

Our Approach

•Gathered expert demon-
strations are suboptimal
and inconsistent.

Gather Demonstrations

•Align demonstrations so important structure is not
smoothed away.
•Dynamic Time Warping [2].

Time Alignment

• Infer target trajectory based on demonstrations
– Structure of graphical model for a given alignment.

•Demonstrations are noisy “measurements.”
•Fake “measurements” for query waypoints
•Run EKF and smoother to compute best posterior esti-

mate for target trajectory.

Trajectory Inference

•Baseline: Interpolate using convex weights which gen-
erate the target waypoints. (Algorithm CX)
•Baseline: Run the result of CX through a Kalman filter.

(Algorithm SM)
•Baseline: No DTW (Algorithm EM)

•Flew 3 aggressive maneuvers: stallturns, tictocs, loops.

Results

•State: position, velocity, orientation, an-
gular velocity.
•Controls: 4 inputs controlling (pitch

rate,roll rate,yaw rate,vertical thrust)

u̇ = v × r − w × q + gu + Cu × [u]

v̇ = w × p− u× r + gv + Cv × [1; v]

ẇ = u× q − v × p + gw + Cw × [1; w; u4]

ṗ = Cp × [1; p; u1]

q̇ = Cq × [1; q; u2]

ṙ = Cr × [1; r; u3]

•Learn model biases for each trajectory
by observing deviations during real
demonstrations. These biases are re-
markably consistent after alignment.

Dynamics Modeling

•EKF for state estimation
•LQR for trajectory following

– Linearize dynamics around target to
get At, Bt

•Receding Horizon iLQR control prob-
lem solved online

Helicopter Setup

•This technique allows us to generate
parameterized, flyable trajectories for
challenging robotic platforms.
•Learn representation for large class of

similar trajectories.
•Learn locally tuned dynamics models

for control.

Conclusions
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