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Abstract— We consider the task of actively exploring unstruc-
tured environments to facilitate robotic grasping of occluded
objects. Typically, the geometry and locations of these objects
are not known a priori. We mount an RGB-D sensor on the
robot gripper to maintain a 3D voxel map of the environment
during exploration. The objective is to plan the motion of the
sensor in order to search for feasible grasp handles that lie
within occluded regions of the map. In contrast to prior work
that generates exploration trajectories by sampling, we directly
optimize the exploration trajectory to find grasp handles. Since
it is challenging to optimize over the discrete voxel map, we
encode the uncertainty of the positions of the occluded grasp
handles as a mixture of Gaussians, one per occluded region.
Our trajectory optimization approach encourages exploration
by penalizing a measure of the uncertainty. We then plan a
collision-free trajectory for the robot arm to the detected grasp
handle. We evaluated our approach by actively exploring and
attempting 300 grasps. Our experiments suggest that compared
to the baseline method of sampling 10 trajectories, which
successfully grasped 58% of the objects, our active exploration
formulation with trajectory optimization successfully grasped
93% of the objects, was 1.3× faster, and had 3.2× fewer failed
grasp attempts.

I. INTRODUCTION

Our work is motivated by the desire to facilitate au-
tonomous grasping of objects behind clutter, inside contain-
ers, on high shelves, and other such unstructured environ-
ments. Refer to Fig. 1 for such a situation where the robot
needs to grasp items commonly found in a kitchen that are
occluded by a grocery bag and a box.

The presence of visual occlusions prevents commonly used
sensors such as cameras and laser range finders from ob-
serving the geometry of the objects in the environment, thus
impeding grasp planning and execution. The limited range
of sensing and uncertainty in sensing due to noise and cali-
bration errors pose additional challenges. Moreover, creating
detailed geometric models of these objects in advance may
be infeasible since cluttered and occluded environments may
consist of objects that have not been previously encountered.
In such situations, the robot needs to sense the world to gain
more information about the objects and their surroundings
before attempting to grasp them.

To facilitate exploration in this setting, we mount an RGB-
D sensor on the robot gripper of a 7-DOF manipulator,
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Fig. 1: Active exploration and grasping: Occlusions pose a key challenge
for robotic grasping in unstructured environments. For instance, the soap
dispenser, spray can and spatula are not visible from both the head and
gripper-mounted RGB-D sensors and therefore cannot be grasped directly.

providing more degrees of freedom than the existing 2-
DOF head-mounted RGB-D sensor. We use an off-the-shelf
implementation of KinectFusion [28], [35] to fuse the 3D
point clouds from the RGB-D sensor mounted on the gripper
into a single 3D voxel map of the environment. With the
recent trend of miniaturization of depth sensors [13], [14],
[27], one can envision mounting these miniature sensors
on the palms and wrists of end-effectors to gain a better
understanding of the 3D world for reliable grasping and
manipulation.

The main contributions of this work are three-fold: (i)
Since reducing uncertainty by directly optimizing over the
entire 3D voxel map includes superfluous regions and is
computationally expensive, we encode only the uncertainty
of the positions of the occluded grasp handles using a
mixture of Gaussians; (ii) In contrast to the traditional
approaches of using a greedy next-best-view (NBV) ap-
proach or exploration along randomly sampled trajectories,
we use trajectory optimization to compute locally optimal
trajectories for the robot gripper by penalizing a measure of
the uncertainty to encourage exploration for grasp handles;
and (iii) We validate our approach by combining our method
of active exploration using trajectory optimization with off-
the-shelf components to autonomously explore and grasp in
an unknown environment. Fig. 3 provides an overview of our
approach for active exploration for grasping in the presence
of occlusions.

We evaluated our approach by actively exploring and
attempting 300 grasps using an RGB-D sensor mounted on



the gripper of a 7-DOF PR2 manipulator. Our experiments
suggest our active exploration formulation can sufficiently
explore the environment to localize grasp handles and that
active exploration strategies based on trajectory optimization
outperform a baseline approach of randomly sampling trajec-
tories and selecting a trajectory for execution that minimizes
the objective function.

II. RELATED WORK

Robotic grasping has been extensively studied over the
past four decades [3], [34]. Most prior work on grasping
assumes complete knowledge of the geometry of the target
object and focuses on grasp quality metrics and grasp plan-
ning in this context. However, the geometry and properties
of objects are often not known a priori when operating
in unstructured environments and information about objects
has to be acquired through sensors [21]. Recent work [9]
has proposed heuristics to grasp unknown or unrecognized
objects based on both the overall shape of the object and
local features obtained from RGB-D sensor data. Machine
learning methods have been used to grasp novel objects [23],
[36]. Eye-in-hand systems have also been used for grasping
unknown objects using visual servoing [25]. However, these
methods do not consider the scenario where objects might
be completely occluded from the robot’s sensors to begin
with, which requires exploration of the environment to find
the target objects.

A key challenge in autonomous operation of robots in
unknown environments is active exploration, which involves
positioning the robot’s sensors to obtain measurements that
reduce uncertainty in the map of the environment. We refer
the reader to an extensive survey by Chen et al. [8].

Active exploration methods can be primarily grouped
into two categories: (i) frontier-based, and (ii) information-
theoretic methods. Frontier-based methods [42] are primarily
geometric in nature and compute frontiers as the discrete
boundary between the free and unknown regions in the
environment map. Extensions of this strategy have been suc-
cessfully used for building maps of unknown environments
in 2D [5], [16] and 3D [11], [37], [38]. Information-theoretic
methods optimize an information-theoretic measure such as
Shannon’s entropy or mutual information computed over the
environment map [7], [15], [19], [24], [39]. However, the
frontiers and information-theoretic measures are computed
over a discretized 2D or 3D map of the environment. Prior
work considers next best view (NBV) planning in which the
robot’s sensors are positioned by sampling a set of candidate
sensor poses or trajectories and selecting the optimal sensor
pose or trajectory. In contrast, we propose a trajectory opti-
mization method to explore unexplored and occluded regions
and empirically show that this is computationally efficient
when compared to sampling and has a higher probability
of success when applied to robotic grasping applications.
Trajectory optimization methods also directly incorporate
kinematic constraints on the sensor motion.

Active exploration using an eye-in-hand range sensor
has been used for 3D scene reconstruction [8], [24], [33]

Fig. 2: Occluded regions and graspable objects: The current map of a
single object on a tabletop surface. The occluded region (i.e. shadow) behind
the object may contain graspable objects of interest.

and object detection in cluttered environments [2]. Active
exploration for robotic grasping has been explored in prior
work [17], [20], [26], [32]. However, these methods assume
that the object geometry is known a priori, implying that
a grasp can be planned for in advance, and the problem
involves identifying the object in the presence of occlusions
or in clutter. Methods for active exploration for grasping
unknown objects [1], [4] use active exploration to reconstruct
the 3D geometry of the object before planning a grasp.
This is computationally expensive and might not always be
feasible, e.g., when the object is in a cluttered environment
or a constrained environment such as a container. In con-
trast, we combine our strategy for active exploration using
trajectory optimization with a grasp handle identification
method developed for unknown objects [40]. We note that
our method can also be combined with other methods for
grasping novel objects based on visual/shape features [9],
[23], [36].

Our work uses recent advances in trajectory optimization
under uncertainty [30] and extends the modelling of discon-
tinuous sensor domains in 2D simulations [29] to 3D real-
world experiments.

III. SYSTEM OVERVIEW

We consider the problem of exploring and grasping in
an unknown environment with an RGB-D sensor rigidly
mounted to the gripper of a 7-DOF manipulator. We assume
the environment is static, the robot base is fixed, and all
objects are kinematically reachable and can be grasped.

We detect frontiers in the environment to enable explo-
ration. Consider Fig. 2 in which the RGB-D sensor field-
of-view is obstructed by an object, creating an occluded
region. If the RGB-D sensor can be maneuvered to view the
occluded region, grasp handles may be found that the gripper
can then grasp. The desired behavior of the exploration is to
reduce the uncertainty of these occluded regions with respect
to the environment frontier.

Fig. 3 illustrates the active exploration and grasping sys-
tem. We formalize our approach for active exploration using
trajectory optimization in Sec. IV. We then combine our



Fig. 3: Active exploration and grasping system: A map of the environment
is continuously updated using the streaming point clouds from the RGB-D
sensor. Frontiers and occluded regions are then extracted from the map. An
exploration trajectory is generated, which is executed on the system. If a
grasp handle is detected and a collision-free grasp trajectory is found, the
system executes the grasp, releases the object in a predetermined area and
resumes exploration. Otherwise, the system continues exploring.

exploration approach with off-the-shelf components for 3D
map construction and grasp handle detection to form a fully
autonomous active exploration and grasping system in Sec.
V. Real-world experimental results are presented in Sec. VI.

IV. TRAJECTORY OPTIMIZATION FOR ACTIVE
EXPLORATION

Given the current frontiers and occluded regions, we
formulate a discrete-time trajectory optimization problem
over time horizon T to localize occluded grasp handles.

A. Objective Formulation

Map uncertainty parameterization: During the exploration
for occluded grasp handles, we maintain a map of the
environment in a 3D voxel grid. Since reducing uncertainty
by directly optimizing over the entire voxel grid includes
superfluous regions and is computationally expensive, we
concisely represent only the occluded grasp handle position
uncertainties by parameterizing the occluded regions as a
mixture of M Gaussians, where M is a user chosen parameter.
Let (xm,Σm

0 ) be the mean position and initial covariance of
the mth occluded region. The occluded region covariances
Σm

t evolve over the time horizon T due to new observations.
The occluded region means xm do not evolve because the
environment is assumed to be static.
Sensor state parameterization: To represent the current
state of the RGB-D sensor, we maintain the current state of
the 7-DOF manipulator joints because the pose of the rigidly
attached RGB-D sensor is fully determined by the kinematics
of the manipulator. Note that because the RGB-D sensor state
is fully determined by the system to which it is attached, our
approach generalizes beyond 7-DOF manipulators to systems
such as quadcopters.

We denote the current state and uncertainty of the 7-DOF
manipulator as (xR

0 ,Σ
R
0 ) where xR

0 is the current joint state

and ΣR
0 is the covariance. Let u be the control input applied

to the joint state xR.
The dynamics and measurement models for the system

and RGB-D sensor are given by the stochastic, differentiable
functions f and h:

xR
t+1 = f(xR

t ,ut ,qt), qt ∼ N(0, I) (1)

zm
t = h(xR

t ,x
m,rt), rt ∼ N(0, I) (2)

where qt is the dynamics noise and rt is the measurement
noise that is assumed to be drawn, without loss of generality,
from a standard normal Gaussian distribution and can be
scaled appropriately to be state and control dependent within
the functions f and h, respectively.

For this work, we assume the system state xR is fully
observable, effectively eliminating the stochasticity of the
dynamics.
Objective function: We seek a set of control inputs u0:T−1
that minimizes the uncertainty of the occluded regions and
penalizes the control effort. One such formulation is to
penalize the trace of the occluded region covariances and
the magnitude of the control input [30], encoded in the cost
functions:

ct(xR
t ,Σ

1:M
t ,ut) = α||ut ||22 +

M∑
m=1

βt tr(Σm
t ) (3)

cT (xR
T ,Σ

1:M
T ) =

M∑
m=1

βT tr(Σm
T ) (4)

where α and βt are user-defined scalar weighting parameters.
To eliminate the stochasticity of the cost functions, we

follow Platt et al. [31] and assume the maximum likelihood
observation is obtained at each time step. The objective
function is:

min
xR

0:T ,u0:T−1

E[cT (xR
T ,Σ

1:M
T )+

T−1∑
t=0

ct(xR
t ,Σ

1:M
t ,ut)] (5)

s. t. xR
t+1 = f(xR

t ,ut ,0)
xR

t ∈ X f easible, ut ∈ U f easible

xR
0 = xR

init , Σ
m
0 = Σ

m
init

B. Uncertainty and System Modeling

Uncertainty model: Given the current system belief
(xR

t ,Σ
R
t ), occluded region beliefs (xm,Σm

t ), control input ut
and measurements zm

t+1, the occluded region beliefs evolve
using an extended Kalman filter (EKF). We assume the
occluded regions are independent and thus their covariances
evolve separately.

Due to discontinuities in the RGB-D sensor domain
stemming from environment occlusions and limited field-of-
view, some of the dimensions of zm

t may not be measured.
Following the approach of Patil et al. [29], we define a binary
vector δ m

t ∈Rdim[z], where the ith entry in the vector δ m
t takes

the value 1 if the ith dimension of zm
t and a value of 0 if no

measurement is obtained due to discontinuities in the sensing
domain. Let ∆m

t = diag[δ m
t ].

For each occluded region, the EKF update equations are:



(a) Frontier detection (b) Signed-distance computation

Fig. 4: The signed-distance computation (b) is computed with respect to the frontiers and occluded region Gaussians (a).
(a) The output of the frontier detection algorithm given a single object in the environment. The frontier is represented by the red rectangle and the voxels
in the occluded region are shown in white. The purple ellipsoid is the Gaussian fit to the occluded voxels.
(b) A simplified 2D illustration of the signed-distance computation for a single occluded region Gaussian. The RGB-D sensor view frustum is outlined
by the dotted line. The frontier detection algorithm has extracted the red frontier and the purple occluded region Gaussian above it. The view frustum is
first truncated geometrically against the frontier, creating the green, blue and yellow convex regions. The signed-distance is negative if the occluded region
mean is inside one of the convex regions and positive otherwise. The magnitude of the signed-distance is the distance to the nearest convex region border.
The signed-distance is shown by the black arrow.

Σt+1 = (I−KtHt)Σ
−
t+1 (6a)

Kt = Σ
−
t+1Hᵀ

t ∆t [∆tHtΣ
−
t+1Hᵀ

t ∆t +RtR
ᵀ
t ]
−1

∆t (6b)

Σ
−
t+1 = AtΣtA

ᵀ
t +QtQ

ᵀ
t (6c)

At =

[
∂ f

∂xR (xR
t ,ut ,0) 0
0 I

]
, Qt =

[
∂ f
∂q (x

R
t ,ut ,0) 0
0 0

]
(6d)

Ht =
[

∂h
∂xR (xR

t+1,x
m,0) ∂h

∂xm (xR
t+1,x

m,0)
]

(6e)

Rt =
∂h
∂r

(xR
t+1,x

m,0), ∆t =

[
I 0
0 ∆m

t

]
(6f)

Σ0 =

[
ΣR

0 0
0 Σm

0

]
(6g)

In Eq. 6g the initial covariances are created by diago-
nally concatenating the initial system uncertainty with the
occluded region covariance. Eq. 6c is the dynamics update
for the covariances, where in Eq. 6d the matrices At and Qt
are modified based on the assumption that the environment
is static. The Kalman gain update in Eq. 6b includes the
binary matrix ∆t to account for discontinuities in the RGB-
D sensing domain, where ∆t in Eq. 6f contains the identity
matrix because we assume the joint state is fully observable.
Dynamics model: The dynamics of the 7-DOF manipulator
are f(xR,u,q) = xR +u+q with xR ∈ R7 and u ∈ R7. The
joint state xR is constrained by the lower and upper joint
limits such that xR ≤ xR ≤ x̄R.
Observation model: The observation function h is the joint
state xR of the 7-DOF manipulator and the relative position
of the occluded region xm to the position of the RGB-D
sensor:

h(xR,xm,r) =
[

xR

xm− t

]
+ r (7)[

R t
0 1

]
= forward-kinematics(xR) (8)

The occluded region mean xm may not be observable due
to occlusions and the limited field-of-view of the RGB-D

sensor. We model this discontinuity with the binary variable
δ m [29] because the Kalman gain in Eq. 6b should not update
the occluded region covariance Σm if the occluded region
mean xm is not visible. However, we approximate δ m with
a sigmoid to ensure the objective function, which is defined
by the uncertainty model, is differentiable.

Given the current frontiers Π, let sd(xR,xm,Π) be the
signed-distance of the occluded region mean to the RGB-
D sensor field-of-view. Let the parameter α be the slope of
the sigmoidal approximation and ρ(xm) be the distance in
the image plane to the principal axis [22]. The sigmoidal
approximation of the measurement availability δ m is:

δ
m =

1
1+ exp[−α(sd(xR,xm,Π)+ρ(xm))]

(9)

The function ρ increases the signed-distance, which encour-
ages the optimization to center the occluded region means
in the image plane.

To calculate the signed-distance of the occluded region
mean to the RGB-D sensor field-of-view, we represent
the field-of-view as a set of convex regions by truncating
the view frustum against the frontiers Π (Fig. 4b). This
truncation process is done geometrically and cannot be
accomplished by discretizing the view frustum because we
require the signed-distance function to be differentiable. The
signed-distance is negative if the occluded region mean is
inside one of the convex regions and positive otherwise. The
magnitude of the signed-distance is the distance to the nearest
convex region border.
Trajectory Sampling and Trajectory Optimization: Two
methods of finding control inputs that minimize the objective
function in Eq. 5 are trajectory sampling and trajectory
optimization.

For trajectory sampling, one randomly samples N sets
of control inputs u0:T−1 and chooses the control inputs
that minimize the objective function. Sampling trajectories
implicitly satisfies the dynamics constraints and collision



avoidance is straightforward to implement. However, as the
dimension of the sample space dim[xR]T increases, N must
increase in order to sufficiently cover the sample space. Thus
trajectory sampling suffers from the curse of dimensionality.

For trajectory optimization, one can solve a nonlinear
optimization problem to find a locally optimal set of controls
[30]. In this work, we used sequential quadratic programming
(SQP) to locally optimize the non-convex, constrained opti-
mization problem. The innermost QP solver was generated
by a numerical optimization code framework called FORCES
[10]. FORCES generates code for solving QPs that is spe-
cialized for convex multistage problems such as trajectory
optimization.

Trajectory optimization does not suffer from the curse
of dimensionality. However, the objective function must be
differentiable and calculating the gradients required by the
underlying QP can be computationally expensive. Collision
avoidance can be addressed by adding a cost term as in
Van den Berg et al. [41], but we do not include collision
avoidance in this work.
Executing Controls and Replanning: Given the output
controls u∗0:T−1 of either trajectory sampling or trajectory op-
timization, we follow the model predictive control paradigm
[6] by executing a subset of the optimized controls and then
replanning.

V. ACTIVE EXPLORATION AND GRASPING

We combine our active exploration formulation with
off-the-shelf components to form a fully autonomous active
exploration and grasping system.

Map Construction: We use the Point Cloud Library [35]
implementation of KinectFusion (KinFu) [28] to fuse the
streaming point clouds into a single map.

KinFu represents the environment map using a truncated
signed-distance function (TSDF) [28] in which each voxel
contains a confidence weight wi and the truncated signed-
distance di to the nearest surface. Voxels with wi = 0 are
unknown voxels and voxels with wi > 0 are either in free-
space (di > 0) or near a surface (di ≈ 0). Fig. 5 illustrates
these different voxel regions in a simplified 2D illustration.
Frontier Detection: We want to extract the frontiers and
occluded regions (e.g. green rectangle and blue region in
Fig. 5) from the TSDF for the objective function in Eq. 5 to
be fully defined.

We first extract the surface voxels and zero-weight voxels
from the TSDF. Under the assumption that the graspable
objects are on a tabletop surface, we find the largest plane
using RANSAC and filter out voxels beneath this plane.
We then extract occluding objects by finding clusters in the
surface voxels and fitting an oriented bounding box (OBB) to
each cluster. The frontiers are the faces of the OBBs closest
to the current RGB-D sensor position. The occluded regions
are parameterized by fitting Gaussians to the zero-weight
voxels that are occluded by each OBB. The algorithm is
outlined in Alg. 1 and an example output is shown in Fig.
4a.

Algorithm 1: Extract Frontiers and Occluded Regions
Input: TSDF
Output: Frontiers Π, Occluded regions (xm,Σm

0 )
1 S← extract surface voxels from TSDF
2 Z← extract zero-weight voxels from TSDF
3 table-plane ← extract largest plane from S
4 filter(S, table-plane)
5 C ← find clusters in S
6 foreach cluster cm in C do
7 OBBm← oriented bounding box of cm

8 Πm← front face of OBBm

9 occm← points in Z occluded by OBBm

10 (xm,Σm
0 )← fit Gaussian to occm

w=0

w=0

w=0 w=0

w>0, d>0

w>0, d≈0

Fig. 5: Truncated signed-distance function: A simplified 2D illustration
of the weights w and truncated signed-distance values d of the KinectFusion
(KinFu) truncated signed-distance function (TSDF). The RGB-D sensor
view frustum is outlined by the dotted line and the single object in the
environment is shown in green. The voxels in the yellow region are known
free space. The voxels in green are a known surface. The voxels in blue
are an occluded region inside the view frustum. The remaining voxels are
outside of the view frustum.

The simplification of the occlusions to simple geometric
primitives is necessary for the observation model. The rep-
resentation of the occluded regions as a Gaussian mixture is
necessary to fit into the EKF framework.
Exploration: The exploration trajectory is either generated
by sampling trajectories or trajectory optimization (Sec. IV)
and is then executed on the robot.
Grasp Handle Detection: To generate candidate grasp han-
dles from the KinFu point cloud, we use the ROS package
handle detector [40], which identifies grasp handles in a
point cloud by searching for regions in the point cloud that
satisfy a set of geometric conditions sufficient for grasping.
Grasp Trajectory Generation and Execution: We attempt
to plan a collision-free trajectory from the current gripper
pose to each grasp handle. Given a grasp handle and the
current map, we use an off-the-shelf motion planner with col-
lision avoidance to generate a collision-free grasp trajectory.
This is a different optimization than the exploration trajectory
optimization detailed in Sec. IV. If a valid grasp trajectory
is found, exploration is halted and the motion planner is
called again to plan a post-grasp collision-free trajectory to
the release point. We do not model the grasped object when
planning the post-grasp trajectory, but instead add a cost to
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Fig. 6: Experiment scenarios: Experiment setups for bathroom (a)-(c), kitchen (d)-(f) and shelf (g)-(i). The bathroom scene consists of a toilet brush and
a plunger in a box. The kitchen scene has a spray can, soap dispenser and spatula occluded by a grocery bag and a box. The shelf scene has a soap
dispenser on a high shelf. Figures (a), (d) and (g) show initial experiment configurations and outline graspable objects in red. Figures (b), (e) and (h) show
the moment a grasp handle is identified. Figures (c), (f) and (i) show successful grasps.

the optimization that maximizes the distance of the gripper
to the tabletop surface.

Once the object is grasped and released, the KinFu map
is reset because the PCL implementation of KinFu assumes
a static environment. The active exploration and grasping
process then begins anew.

VI. EXPERIMENTS

Hardware Setup: The RGB-D sensor was rigidly mounted
on the right 7-DOF arm of a PR2 robot. The transform of the
RGB-D sensor was registered to the kinematic chain using
the registered RGB-D sensor on the PR2 head and an AR
marker. The RGB-D sensor used was a PrimeSense Carmine
1.09, which has a range of 0.35m-1.4m.

All code was implemented in C++ and run on an 8-core
3.4 GHz Intel i7 processor with a 1280 MB GeForce GTX
570 graphics card. Interprocess communication was through
ROS.
Experiment Scenarios: We evaluated our active exploration
and grasping system on a bathroom, kitchen and shelf scene.
In all scenes, the graspable objects were positioned in reach
of the 7-DOF manipulator. The initial RGB-D sensor pose
was chosen so no grasp handles were visible. Between trials,
the initial RGB-D sensor and object poses were perturbed to
demonstrate robustness. The non-graspable occluding objects
were not moved between trials. In all scenes, no grasp handle

could have been seen by the head RGB-D sensor because of
occlusions or its vantage point.

Bathroom scene: In the bathroom scene (Fig. 6(a)-(c)), a
toilet brush and plunger were placed in a box. The RGB-D
sensor was positioned to be level with and pointed at the
box.

Kitchen scene: In the kitchen scene (Fig. 6(d)-(f)), a
spray can, soap dispenser, and spatula were placed behind a
grocery bag and a box. The RGB-D sensor was positioned
to be level with and pointed at the box.

Shelf scene: In the shelf scene (Fig. 6(g)-(i)), a soap
dispenser was placed on a high shelf. The RGB-D sensor
was positioned to look at the base of the shelf.
Experiments: We compared trajectory optimization with
trajectory sampling for 10, 50, 100 and 200 sampled tra-
jectories. We chose these sampling sizes because the time
for trajectory optimization was comparable to sampling 100
trajectories. Both trajectory optimization and trajectory sam-
pling had trajectory lengths of T = 5, which we chose based
on the range of motion of the 7-DOF manipulator. From the
occluded region Gaussians produced by the frontier detection
algorithm, we input the M = 2 occluded region Gaussians
with the largest uncertainty for all exploration methods. We
chose M based on the average number of objects across all
scenes. The execution of the exploration trajectories was
limited to a speed of 5 cm

s to ensure consistency in the
map construction. The execution of the grasp trajectories was



Bathroom Kitchen Shelf
Sampling Traj Sampling Traj Sampling Traj

10 50 100 200 Opt 10 50 100 200 Opt 10 50 100 200 Opt

Total number of objects 20 20 20 20 20 30 30 30 30 30 10 10 10 10 10
Objects grasped 14 19 18 20 20 15 21 23 28 27 6 8 7 8 9
Objects missed 7 6 6 4 0 14 21 12 9 7 5 6 5 8 1

Avg. time per object (s) 130 133 122 141 112 159 146 139 132 115 165 129 140 131 122
± 72 ± 49 ± 30 ± 61 ± 25 ± 74 ± 56 ± 38 ± 37 ± 24 ± 83 ± 31 ± 42 ± 15 ± 33

Avg. time to plan (s) 0.09 0.51 1.05 2.41 0.96 0.13 0.70 0.73 1.80 0.82 0.14 0.68 0.93 1.92 0.86
± 0.1 ± 0.4 ± 0.7 ± 3.2 ± 0.4 ± 0.2 ± 1.4 ± 0.8 ± 1.7 ± 0.3 ± 0.1 ± 0.6 ± 0.8 ± 1.2 ± 0.4

Plans per grasp 4.8 4.5 4.0 4.6 3.7 6.2 5.2 4.9 4.4 4.0 6.6 4.8 5.2 4.6 4.6
± 3.0 ± 2.2 ± 1.5 ± 2.5 ± 0.8 ± 3.7 ± 2.8 ± 1.9 ± 1.6 ± 1.5 ± 3.7 ± 1.5 ± 2.0 ± 1.0 ± 1.4

Avg. distance travelled (m) 3.38 3.70 3.48 3.68 3.16 3.77 3.70 3.63 3.40 3.29 3.71 3.25 3.23 3.29 3.15

Frontier detection (%) 39.3 36.3 33.5 34.8 32.7 43.8 37.8 37.0 34.2 32.6 50.9 45.0 45.4 39.2 43.7
Planning (%) 0.3 1.7 3.5 7.9 3.2 0.5 2.5 2.5 5.9 2.8 0.5 2.5 3.5 6.8 3.3
Exploration movement (%) 33.1 33.0 29.9 30.7 30.5 33.8 31.6 33.0 31.0 30.5 36.1 32.7 35.3 32.9 35.9
Grasping (%) 27.3 29.0 33.0 26.6 33.6 21.9 28.1 27.5 28.8 34.1 12.5 19.8 15.9 21.1 17.2

TABLE I: Experiment results: Experiment results for the bathroom, kitchen and shelf scenes comparing the exploration methods of 10, 50, 100 and
200 sampled trajectories with trajectory optimization. Ten trials were conducted for each scene and exploration method combination. Of the 300 grasp
attempts, exploration with trajectory optimization grasped as many objects as exploration with 200 sampled trajectories, while trajectory optimization had
the fewest grasp misses. Trajectory optimization attempted grasps the quickest and the planning time for trajectory optimization was similar to sampling
100 trajectories. Exploring with trajectory optimization required the least plans per grasp attempt and travelled the least distance per grasp attempt. The
majority of the time in the active exploration and grasping system was split between frontier detection, executing exploration trajectories and grasping.

limited to a speed of 8 cm
s for safety reasons. We ran 10 trials

for each scene and exploration method. The experimental
results are listed in Table I.
Analysis: We analyze the results in terms of the number of
objects grasped, missed grasps and execution time.

Grasps: Across all scenes, exploration using sampled
trajectories had more successful grasps as the number of
sampled trajectories increased. The number of successful
grasps when exploring with trajectory optimization was
similar to sampling 200 trajectories. More objects were
successfully grasped when exploring with trajectory opti-
mization or a high number of sampled trajectories because
these methods provided better initializations for the grasp
trajectory optimization. With a poor initialization (e.g. upside
down), the grasp trajectory was more likely to not reach
the grasp handle position or push the object out of reach
(Fig. 7). Collisions with the environment did not occur for
trajectory optimization and 200 sampled trajectories because
the observation function encourages distance between the
RGB-D sensor and the frontiers and occluded regions.

(a) (b)

Fig. 7: Failure cases: Common reasons for missing a grasp: (a) inaccurate
grasp handle detection and (b) unintended collisions with the grasp object.

Across all scenes, exploration with trajectory optimization
had fewer misses than all explorations with sampled trajecto-
ries. Sampled trajectories often led to partial views of grasp

handles, which led to riskier grasp attempts and more misses.
Execution time: Across all scenes, trajectory optimization

averaged the shortest time to a grasp attempt. The average
time to plan an exploration trajectory with trajectory opti-
mization was similar to the time to sample 100 trajectories.
Exploration with trajectory optimization on average planned
fewer times per grasp attempt and travelled the least distance
per grasp attempt.

VII. FUTURE WORK

Our approach separates the task of exploration and grasp-
ing, which may be suboptimal. Future work could consider
exploration and grasping simultaneously by representing
each occluded region as a Gaussian process implicit surface
(GPIS) and minimizing the uncertainty of these GPISs [12].

We chose the task of finding and grasping all feasible
objects in the environment. A more common scenario is to
find and grasp a specific object. Future work could investi-
gate targeted exploration and grasping by incorporating prior
knowledge and using hypothesis pruning methods to select
which occluded regions to explore [2], [18].

The underlying discrete map representation is abstracted
away using a Gaussian mixture. We plan to investigate us-
ing gradient-based trajectory optimization over information-
theoretic objectives defined directly on the discrete map
representation [7], [19], [39].

VIII. CONCLUSION

We have addressed the problem of exploring and grasping
in an unknown environment. Our key contributions include
(i) encoding the uncertainty of the positions of the occluded
grasp handles as a mixture of Gaussians, (ii) using trajectory
optimization to compute locally optimal trajectories for the



robot gripper by penalizing a measure of the uncertainty to
encourage exploration for grasp handles, and (iii) combining
our active exploration formulation with off-the-shelf com-
ponents to autonomously explore and grasp in an unknown
environment. Our experiments suggest this formulation can
sufficiently explore the environment to discover grasp han-
dles and that given equivalent time constraints, trajectory
optimization outperforms trajectory sampling.
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