
Learning Accurate Kinematic Control of Cable-Driven Surgical Robots
Using Data Cleaning and Gaussian Process Regression

Jeffrey Mahler1, Sanjay Krishnan1, Michael Laskey1, Siddarth Sen1, Adithyavairavan Murali1,
Ben Kehoe2, Sachin Patil1, Jiannan Wang1, Mike Franklin1, Pieter Abbeel1, Ken Goldberg3

Abstract— Precise control of industrial automation systems
with non-linearities such as joint elasticity, variation in cable
tensioning, or backlash is challenging; especially in systems for
which a detailed kinematics model is not available. Cable-driven
Robotic Surgical Assistants (RSAs) are one example of such
an automation system, as they are designed for master-slave
teleoperation. We consider a problem in which we have sensors
external to the system that measure the state, however we can
only control the system in its native coordinate frame with
its imprecise native controller. Gaussian Process Regression
(GPR) is a data-driven technique that can estimate a non-
linear mapping between control inputs and sensed kinematic
responses. However, GPR is sensitive to outliers, and if our
sensor values are corrupted, eg. occlusions in a vision system,
this can lead to an inaccurate model. In this paper, we extend
the use of GPR for precise control of cable-driven surgical
robots by using i) velocity as a feature in the regression and
ii) data cleaning based on rotation limits and the magnitude of
velocity. We evaluate this approach on the Raven II Surgical
Robot, using the PhaseSpace LED-based motion capture system
to track the Raven end-effector. We record 303 trajectories
as the robot grasps foam “damaged tissue” fragments, which
are dirty due to occlusions of the LEDs. On these recorded
trajectories, including velocity information as a feature in GPR
reduces the norm position error by 50% and the norm Euler
angle error by 21%, with an additional 17% reduction in norm
position error and a 16% reduction in norm Euler angle error
using data cleaning. We use the learned kinematic control
to achieve a 3.8× speedup over past results on the task of
autonomous surgical debridement. Further information on this
research, including data, code, photos, and video, is available
at http://rll.berkeley.edu/raven.

I. INTRODUCTION

Imprecision in actuation, where actual motion varies from
desired motion, is an issue in almost all industrial automation
systems due to joint elasticities, variations in cable tension,
backlash, or wear on geartrains. Compensating for impre-
cision is particularly challenging when a detailed dynamic
model of the system is unavailable, as is common for propri-
etary systems and when accurate internal system parameters
are not known. However, even in the absence of a detailed
model of the system, control inputs and observations from
external sensors are often available.
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Fig. 1. System Architecture. In the training phase, we collect pairs of
desired states xd and observed states after execution xo using the robot’s
imprecise kinematics model. In the learning controller, we remove corrupted
data with data cleaning, and then learn F , a mapping that minimizes the
difference between xd and the observed xo after sending command F (xd)
to the robot. We model this function as a composition of a rigid and a non-
linear transformation, which are learned with a constrained least squares
and Gaussian Process Regression respectively. During operation, the user-
operated high-level controller applies this learned function to the desired
state and commands the system’s native controller to go to F (xd).

Semi-autonomous surgery with cable-driven Robotic Sur-
gical Assistants (RSAs), which are designed for master slave
teleoperation and have non-linearities due to cable elasticity
and tensioning, is one example of a scenario with these
challenges. In this paper, we present an approach to learning
accurate kinematic control of cable-driven RSAs using a
combination of rigid transformation and Gaussian Process
Regression (GPR), which was shown by Pastor et al. to
control the cable-driven DARPA ARM-S to an accuracy of
2 mm - 4 mm without parameterization of kinematic non-
linearities [15]. However, past work has not considered using
velocity as a feature in GPR, which can influence non-
linearities at higher speeds. Addtionally, past work does not
explicitly address the effect of dirty data on GPR, which
often occur in automation settings due to occlusions and
lighting changes in the workspace. We extend previous work
on GPR for kinematic control by i) adding velocity as
a feature in GPR and ii) using data cleaning to remove
invalid pairs of states. We call our three step procedure of
data cleaning, rigid transformation, and GPR the “learning
controller,” illustrated in Fig. 1.

In addition to cable-driven surgical robots, this method
has the potential to improve control of non-linear automa-
tion systems that do not have a detailed kinematic model
available, that have an incomplete kinematics model, that
can compund small kinematic errors due to lack of shaft



encoders, or that have complicated and/or state-dependent
non-linear dynamics (e.g., coupling between many joints or
state-dependent cable tension). Examples of such systems
include the ABB IRB 6600, an low-cost industrial robot with
dynamic coupling effects and flexible joints [25], the Baxter
robot, the Barrett arm, the Ekso Bionix ProStep c©, and cable-
driven 7-DOF humanoid arms [2].

We evaluate of our approach on the Raven II Surgical
Robot, an open source hardware platform for research on
RSAs [5]. To collect training data for our model, we use
PhaseSpace LED-based motion capture to record the trajec-
tory of the end-effector using four cameras. The PhaseSpace
cameras can capture at 480 Hz and localize LEDs to within
0.1 mm, resulting in accurate pose and velocity estimation
when the LEDs are not occluded from rotation of the tool.

We record 303 observed and desired trajectories for our
two-arm Raven surgical robot system as it autonomously
executes surgical debridement, where the goal is to find,
grasp, and transport “damaged tissue” fragments, following
the setup of Kehoe et al. [10]. We use these recordings to
train the learning controller in pose space, and we measure
the improvement in the mean absolute accuracy of our
approach on a held-out set of test trajectories. Our results
show that including velocity as a feature in GPR reduces
the norm position error by 50% and the norm angular error
by 21% on these recorded trajectories. Furthermore, the
addition of data cleaning reduces the norm position error
by an additional 17% and the norm angular error by an
additional 16% over the best result without any data cleaning.
The results also indicate that our contributions reduce the
standard deviation of the test error. We also measure the
accuracy and repeatability of reaching desired poses in open-
loop using our correction method to characterize the effect
of drift when using our correction method. Using the new
kinematic control model, we achieve a 3.8× speedup over
previous work on the autonomous surgical debridement task
[10].

II. RELATED WORK

One method to control cable-driven manipulators is to
directly model and estimate the non-linear parameters. Es-
timating the kinematic parameters of serial-link robot ma-
nipulators has been well studied in the calibration literature.
See [7] for an overview. In [14], Nicosa and Tornambé use
output injection to model joint elasticity parameters, but they
assume the exact state of the robot is known. Wernholt et al.
learned non-linear parameters through regression, dividing
up the states of the non-linear model into locally linearly
regions and compute a transfer function for each area. [26].
Chen et al. propose a two-level self calibration method
for a 7-DOF cable-driven humanoid arm based on iterative
linearization and updates of error in state with respect to
kinematic parameters [2]. Naerum et al. considered both
offline and online parameter estimation using the Unscented
Kalman Filter [13] with an explicit model of a cable-
driven 1-DOF system with motor angle measurements. This
work was extended to the 7-DOF Raven Surgical robot in

simulation, but the accuracy was sensitive to hand-tuned
process noise estimates [20].

Cable-driven robots can also be controlled without without
explicit parameterization of non-linearities. Abdholli et al.
used a neural network to learn the dynamics of non-linear
systems and demonstrated the approach on elastic joint
systems with motor angle and velocity measurements [1].
In [27], Williams et al. develop a slack-free controller by
ensuring that cable tension is positive for all motion, but
the authors assume known constants for cable elasticity.
Feedforward-feeback control has also been proposed to com-
pensate for unmodeled non-linearities in 2-DOF oscillating
piezocantilevers [19]. Reiter et al. track the error between
the pose from the forward kinematics and the pose from
keypoint-based visual tracking in an Extended Kalman Filter
to precisely estimate the pose of the cable-driven Intuitive
Surgical da Vinci R© [23]. While this allows for an incomplete
kinematics model, the linearization may cause divergence
when the error dynamics are inaccurate or approximated
poorly.

Past work in system identification has studied regression
with a Gaussian Radial Basis Function (RBF) kernel in
the context of controlling nonlinear systems without explicit
kinematic parameterizations [8], [9]. Pastor et al. use a two-
stage system consisting of a rigid transformation and Gaus-
sian Process Regression to model the state-dependent rela-
tionship between robot desired poses and camera-observed
poses on cable-driven robots [15]. The authors demonstrate
mean position error for the DARPA ARM-S on the order
of 2 mm - 4 mm, but did not explicity consider including
velocity as a feature to GPR and the effect of data cleaning
on model accuracy. In our work, we extend this method
by including velocity as a feature in GPR and using data
cleaning to improve mean accuracy on the Raven II Surgical
Robot to 1 mm.

Our work is also related to prior work in data cleaning
and outlier rejection. For general statistical models, Random
Sample Consensus (RANSAC) has been extensively studied
to remove high-magnitude outliers [3]. Various extensions to
the RANSAC model have been proposed to cope with tuning:
Least of Medians [12] and Residual Consensus [17], which
leverages the fact that the test error should have small vari-
ance over the true inlier set. In addition, there are adaptive
techniques that allow for early stopping if a good enough
model has been found [18]. Expectation Propagation (EP)
has been proposed to make Gaussian Process Regression
robust to outliers by using a mixture model posterior for
the regressor consisting of separate components for inliers
and outliers [11]. This approach requires a Gaussian Process
prior on outliers whereas our approach is free of such a
prior. Pearson studied the effects of outliers in system iden-
tification [16], stressing the importance of data cleaning for
proper identification. Pearson considers impulse responses of
single-input single-output systems, and argues that using a
specialized median filter (called the Hampel Filter) works
well empirically to remove outliers in many datasets. Our
model extends Pearson’s insights on data cleaning to the



multi-dimensional case using a similar median filter (Least
of Medians variant of RANSAC), and additionally basing
futher data cleaning on the physical properties of the system
and workspace.

III. PROBLEM DEFINITION

We consider a cable driven robot equipped with a native
controller that uses an imperfect internal kinematics model
and encoder values to convert state commands to physical
voltages on the robot, and a sensor system that observes
the state of the robot, as illustrated in Fig. 1. Our poses are
defined with respect to the frame of the native controller. We
adopt the following variable naming conventions throughout
this paper:
• tx, ty, and tz are the translations in the x, y, and z

directions with respect to the global coordinate frame
• φy, φp, and φr are the rotations about the yaw, pitch,

and roll axes, repectively, with respect to the global
coordinate frame

• p = (tx, ty, tz, φy, φp, φr) is the pose of the robot
• ṗ is the derivative of the pose
• x = (p, ṗ) is the state of the robot, with subscripts

xc,xo, and xd to denote the commanded, observed, and
desired states, repectively

• R(p) ∈ R3×3 is the rotation matrix corresponding to
the yaw, pitch, and roll rotations of p

• t(p) ∈ R3×1 is the translation of p
• T (p) =

(
R(p) t(p)
0 1

)
∈ R4×4 is the rigid transformation

matrix corresponding to p
• T = {x1, ...,xt} denotes a trajectory of length t
• X = {(xc,1,xd,1), ..., (xc,M ,xd,M )} denotes the set of
M pairs of corresponding observed and desired training
states

• Y = {(xc,1,xd,1), ..., (xc,N ,xd,N )} denotes the set of
N pairs of corresponding observed and desired testing
states

Our primary goal is to learn how to send commands to the
native controller such that observed states xo, closely match
the desired states xd. As illustrated in Fig. 1, we augment the
system with a learning controller that estimates a function
F to tranform desired states before sending them to the native
controller. We consider a variant of the approach of [15]
to learn the function F . Specifically, we constrain F to be
the composition of two functions: a rigid transformation G
and a non-linear function H , so that F (x) = H(G(x)).
We learn F by minimizing the difference between the
transformed desired state F (xd) and the state command xc

that generated the corresponding observed state xo on the
robot. In summary, our formal goal is to find some function
F : R12 → R12 such that ‖F (xd) − xc‖ is minimized over
our test data set Y given the constraints on F .

We estimate the constant rigid offset using orthornormally
constrained least squares over the set of rigid transformation
matrices. Following the approach of [15], we estimate the
non-linear component using Gaussian Proccess Regression
(GPR). We review these regression methods in Section IV
to highlight details specific to the kinematic control setting.

For data cleaning, we model corruption of the training and
test data as sparse noise that is not physically realizable by
the robot. Our data cleaning can remove these examples to
avoid biasing our model.

We assume a one-to-one mapping between the state com-
manded to the robot and the observed states after executing
this command in our analysis. We note that this is not true
for overactuated robots and automation systems, but for these
systems our method can be applied on joint angles instead
of the end-effector pose. We also assume that the sensor
does not introduce additional systematic biases into the state
estimates.

IV. METHOD

Given a training set X and a test set Y , our method
for estimating the function F relating observed states xo

to desired states xd consists of three consectutive stages
performed offline:

1) Data Cleaning
2) Estimation of Rigid Transformation
3) Gaussian Process Regression

We collect our training and test sets by recording time-
synchronized pairs of commanded and observed robot states
with PhaseSpace motion capture, and treat the observed
states as the desired states in training. Details of the data
collection procedure can be found in Section V.

Our data cleaning consists of removing states that are
outside the physical limitations of the sensor and are outliers
with respect to our model. We estimate the rigid transforma-
tion by solving an orthonormally-constrained least squares
problem on the set of training pose matrices. In GPR, we
use the entire current state as features to regress to the
desired poses. We review the methods of estimating the
rigid transformation and GPR to highlight details specific
to the kinematic control setting and to clarify some of the
motivation for data cleaning; then we describe our data
cleaning process.

A. Estimation of Rigid Transformation

To reduce the linear component of the error, we find the
rigid transformation that minimizes the sum of squared errors
for the training set (X ). A rigid tranformation is composed of
an orthornormal rotation matrix R ∈ R3×3 and a translation
vector t ∈ R3×1. We minimize the error with respect to the
Frobenius norm:

R∗, t∗ = argmin
RTR=I,t

N∑
i=1

‖
(
R t
0 1

)
T (pi,d − T (pi,c)‖2F .

This objective can be solved in closed form using the Sin-
gular Value Decomposition, the accepted method of solving
the linear transformation between two rigid bodies in the
Computer Vision community [6].



B. Gaussian Process Regression

Gaussian Process Regression (GPR) is a Bayesian non-
linear function learning technique that models a sequence of
observations as generated by a Gaussian process. We apply
the rigid transformation G(·), and we fit the transformed
observations to a Gaussian process. Solving this problem
amounts to a form of kernel linear regression.

A key parameter to the problem is the kernel, a measure
of similarity between two training examples. We apply GPR
with a kernel (called the Radial Basis Function RBF) of the
following form:

k(xi,xj) = σe
−‖xi−xj‖

2

2l2

where σ denotes the signal variance (can be interpreted as a
smoothing parameter) and l denotes the characteristic length
scale for the training data. GPR also typically involves a
regularization constant β to model noise in the output mea-
surements. We estimate these parameters using the GPML
Toolbox [22]. See [21] for a comprehensive description of
GPR, including how to estimate these parameters.

GPR learns a map from the input observed states xo to the
output poses of the desired states pd, since we cannot directly
command the velocity of the robot. As opposed to past work,
we directly include the velocity of xo in the features of
GPR, which makes training time longer but provides more
information about the sources of non-linearities. Thus, we
perform kernelized regression for output dimension i:

KX ,Y =
( k(x1,y1) ... k(x1,yM )

...
k(xN ,y1) ... k(xN ,yM )

)
x ∈ X , y ∈ Y

µi = KX ,Y
T (KX ,X + β−1I)−1yi

Σi = KY,Y −KX ,Y
T (KX ,X + β−1I)−1KX ,Y .

where yi = (x
(i)
d,1, ...,x

(i)
d,M ) is the vector of the i-th com-

ponent of all training outputs. Also, K is the kernel matrix,
and µi and Σi are the mean and variance of the prediction
for the i-th component, respectively.

C. Data Cleaning and Outlier Rejection

The output from the PhaseSpace motion capture system
can be contaminated by outliers, ie. examples that signifi-
cantly disagree with our model. We found that these outliers
are largely caused by occlusions of the LED markers, and
an occlusion for one or more of the cameras can lead low
quality data. We further observed discontinuities in the output
at the point where tool moved into the occluded region.
Phasespace does not grant access to the appropriate low-level
information, such as the unfiltered data from each camera,
which would allow us to detect these problems in real-time.

Corruption is not always in the form of outliers, and
sometimes examples that lie close to the mean of the model,
or “inliers”, may actually come from sequences of states that
are physically impossible, such as states outside of the joint
limits of the robot or states in which the velocity is higher
than the maximum possible on the system. Data corruption
can bias our learned model if the corruption is correlated

with one of our features, e.g., some parts of the state-space
are more likely to have outliers. We handle dirty data by
first removing outliers using Least of Medians (LMEDS), a
variant of RANSAC, and then removing potentially corrupted
inliers using thresholds on the rotation, position, and velocity
based on the physical limitations of the robot.

RANSAC has been extensively used for fitting statistical
models in the presence of high magnitude outliers. Classical
RANSAC is often challenging to tune, as it has two hyper-
parameters: a distance threshold for classifying inliers and
minimum number of consensus points. The first hyperparam-
eter is particularly difficult to select in our setting because
the distance is in an abstract metric space which includes
both translation and rotation. Least of Medians (LMEDS)
[12] and Residual Consensus [17] have been proposed as
parameter-free variants of RANSAC, and we found that the
LMEDS method gave us the most accurate final model on
testing data without tuning.

While LMEDS gives us a way to reject outlier training
examples, it does not address inliers that are potentially
corrupted. It also ignores the time-series structure of the
data and processes each training example independently. To
address this problem, we can incorporate additional knowl-
edge about physical process and the workspace. We designed
an additional cleaning method, which runs in conjuction
with LMEDS, that incorporates trajectory and workspace
information to reject sequences of examples that were not
physically realizable by the robot. We analyzed a dataset of
observed robot states from the motion capture system and
set angle based thresholds where the markers would not be
visible. We also set thresholds to reject data points which
corresponded to velocity magnitudes larger than what the
robot could physically execute given the speed of operation.

Finally, we counted the number of rejections within a
trajectory and if more than a threshold P% of its points
were rejected, we rejected the entire trajectory. We found
P = 90% worked well empirically. In our experiments, we
show our how our cleaning results in reduced mean absolute
test error and also reduces the standard deviation of these
errors.

V. EXPERIMENTS

A. Experimental Setup

We tracked the motion of the Raven II with a four camera
PhaseSpace Impluse X2 motion capture system. The four
cameras were placed in an arc of approximately 120◦ at a
distance of approximately 1.5 m to the Raven instrument,
oriented towards the instrument. We mounted three LEDs
to the Raven instrument to measure the pose and velocity
(Fig. 3). The Raven performs a surgical debridement task,
in which the goal is to find, grasp, and transport “damaged
tissue” fragments [10], and we represented the tissue frag-
ments with pieces of red foam. The locations of the red foam
were determined with a stereo camera setup. This setup is
illustrated in Fig. 2



Fig. 2. Workspace for autonomous surgical debridment with the Raven II
Surgical robot. The robot jointly grasps and transports the fragments with
two cable-driven arms. Encoders are located only on the motors.

Fig. 3. PhaseSpace setup for tracking the pose and velocity of the
Raven instrument. We mount three LEDs: one in the center of the gripper
for position measurements, and two more on the fingers for orientation
measurements.

B. Test Accuracy of Learning Controller

In our first experiment, we evaluated the accuracy of the
learning controller on a set of unseen testing trajectories.
We first ran the Raven with its native controller to collect
data to train the learning controller. We executed different
instances of the debridement task; fragment locations were
chosen uniformly at random over the 8 cm × 8 cm × 2 cm
grid, and for saftey we offset the target states by 1 cm above
the platform on which target tissue fragments are placed.
We collected 303 debridement task trajectories consisting
of over 24,000 pairs of observed states and commanded
states captured at 100 Hz. During the data collection, we
operated the Raven at a speed of 5 cm per second, and each
task trajectory was approximately 1 second long. We treat
the states observed with PhaseSpace motion capture as the
desired goal states in our training objective.

We randomly assigned a subset of 80% of these observed
trajectores to the training set and held out 20% for test-
ing. Training and testing were performed using the GPML
Toolbox in matlab [22], and velocities were computed using

the five-point stencil method for numerical differentiation.
We evaluate accuracy on both a clean testing set and a
dirty testing set. The evaluation on the clean testing set
illustrates the value of data cleaning at execution time. While
it is easy to clean a pre-recorded dataset, it can be quite
complex to discard erroneous states during a real execution.
For example, during execution of a surgical procedure, if the
sensor observes a dirty state, the robot will need to perform
an error recovery procedure due to the missed observation
such as halting. We defer this question to future work, but
our results suggest that cleaning during execution can lead
to more precise control.

1) Testing Accuracy: Results on the test dataset using
our non-linear correction are detailed in Table I below. We
evaluate the different components of the learning controller,
and we compare the mean and 1-standard deviation of the
error between commands and corrected desired poses along
each of the pose dimensions tx, ty, tz, φy, φp, and φr for the
test set. We compare the following correction methods: i)
no correction, ii) only a fixed rigid offset, iii) a fixed rigid
offset with data cleaning iv) a fixed rigid offset and GPR
without velocity information, v) a rigid transformation and
GPR with velocity information, and vi) a rigid transformation
and GPR with velocity information and data cleaning (our
proposed method). The results show that the addition of
velocity significantly improves the accuracy of the learned
non-linear mapping; reducing the norm position error by
50% and the norm angular error by 21%. This suggests that
some of unparametrized non-linearities are correlated with
the velocity, and including the velocity as a feature makes
their effects easier to learn.

Furthermore, the addition of data cleaning to GPR with
velocity information reduces the norm position error further
by an additional 17% and the norm angular error by an
additional 16%. Data cleaning also reduces the error and
standard deviation of the fixed rigid offset, but the high error
compared to GPR suggests the presence of non-linearities.
We also found that the standard deviation is significantly
reduced when using GPR with the addition of velocity
information and data cleaning. We visualized the results in
the translation dimensions (tx, ty, and tz) for the correction
methods i), ii), and vi) for a sequence of 1,000 poses from
the testing set in Fig. 4.

2) Training Time and Training Set Size: Gaussian Process
Regression involves an O(M3) matrix inversion, where M
is the size of the training set, potentially leading to long
training times. We explored the tradeoff between the size of
the training set and testing error. We randomly subsampled a
fixed percentage of the examples in the training set X to form
a reduced training set, and trained the learning controller on
this smaller set. We then evaluated the accuracy of this model
on the held out testing set (Fig. 5).

We find that after 460 states, or 2.5% of the original
training set, further reductions in absolute mean error from
larger training sets are less than 0.1 mm for position and
0.1◦ for rotation. Training with 2.5% of the set takes only
18.6 seconds, as opposed to 4228.8 seconds for 100% of the



Test Set State
Variable No Correction Fixed Offset

Fixed Offset
and Data
Cleaning

Fixed Offset
and GPR

Fixed Offset,
GPR, and
Velocity

Fixed Offset,
GPR,

Velocity,
and Data Cleaning

Dirty

tx (mm) 17.6 ± 8.3 4.2 ± 10.2 2.6 ± 4.6 4.2 ± 9.9 1.6 ± 3.9 1.6 ± 1.6
ty (mm) 17.5 ± 5.0 6.0 ± 4.7 5.9 ± 3.9 2.6 ± 3.8 1.6 ± 1.9 1.5 ± 1.5
tz (mm) 9.0 ± 7.4 8.3 ± 7.2 8.1 ± 6.4 2.3 ± 5.1 1.5 ± 2.2 1.4 ± 1.6

φyaw (deg) 5.5 ± 10.4 4.9 ± 9.8 4.6 ± 7.8 2.0 ± 7.1 1.8 ± 3.4 1.4 ± 2.3
φpitch (deg) 11.6 ± 9.3 7.7 ± 9.4 6.9 ± 7.0 3.2 ± 7.9 1.9 ± 3.6 1.5 ± 1.8
φroll (deg) 22.3 ± 22.5 7.3 ± 23.6 12.0 ± 21.9 1.7 ± 9.4 2.1 ± 3.4 1.7 ± 3.3

Clean

tx (mm) 17.4 ± 2.6 2.9 ± 2.3 2.6 ± 2.1 3.4 ± 3.2 1.3 ± 1.3 1.4 ± 1.7
ty (mm) 17.1 ± 4.1 5.8 ± 3.5 4.0 ± 4.2 2.2 ± 2.1 1.5 ± 1.6 1.4 ± 1.5
tz (mm) 7.5 ± 4.2 7.8 ± 6.2 7.1 ± 5.3 1.6 ± 1.5 1.3 ± 1.3 1.1 ± 1.2

φyaw (deg) 3.2 ± 2.7 2.8 ± 1.8 2.9 ± 6.2 1.3 ± 1.8 1.5 ± 2.1 1.3 ± 2.0
φpitch (deg) 10.8 ± 6.4 6.0 ± 2.3 5.9 ± 4.2 2.3 ± 2.3 1.7 ± 2.0 1.6 ± 1.9
φroll (deg) 16.6 ± 9.8 6.3 ± 3.2 6.6 ± 9.8 1.7 ± 3.2 2.0 ± 3.4 1.9 ± 3.1

TABLE I
MEAN AND 1-STANDARD DEVIATION OF THE ERROR BETWEEN THE CORRECTED DESIRED STATE AND ROBOT COMMAND ON A TEST DATASET FOR

EACH OF THE 6 DEGREES OF FREEDOM. THE FIRST SET OF ROWS EVALUATE THE ACCURACY OF THE FOLLOWING TECHNIQUES ON A DIRTY TESTING

SET: NO CORRECTION, A FIXED RIGID OFFSET ONLY, A FIXED RIGID OFFSET WITH DATA CLEANING, A FIXED RIGID OFFSET AND GPR WITHOUT

VELOCITY INFORMATION, A FIXED RIGID OFFSET AND GPR WITH VELOCITY INFORMATION, AND OUR PROPOSED SEQUENCE OF A FIXED RIGID

OFFSET, GPR WITH VELOCITY INFORMATION, AND DATA CLEANING. THE SECOND SET OF ROWS EVALUATE THE SAME TECHNIQUES ON A CLEAN

TESTING SET.
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Fig. 4. Robot commands (green) and pose observations from PhaseSpace motion capture (blue), observations with fixed rigid offset (red), and observations
with fixed rigid offset and GPR, using velocity information and data cleaning (teal). The robot commands are the target of the non-linear mapping. The
error between the fixed rigid offset and commands indicate that non-linearities are present. Our proposed method of a fixed offset, GPR with velocity
information, and data cleaning clearly reduces these non-linear errors between observation and command.

dataset, evaluated on a machine with OS X with a 2.7 GHz
Intel core i7 processor, and 16 GB 1600 MHz memory.

C. Repeatability of End Effector State When Applying non-
linear Correction

After training the learning controller, we evaluated the
accuracy and repeatability of reaching desired states by
transforming and executing planned debridement task tra-
jectories using our model. While pre-recorded trajectories



provide precise velocity estimates around a given pose at
each timestep, at task execution time the future velocities
must be estimated from planned states. These estimates can
introduce additional error in the final end-effector pose in
addition to drift accumulated over the course of a trajectory.
Therefore, the test error rates can be achieved in practice
using feedback control at the same frequency at which
commands are sent to the controller during training, but in
practice this is not always possible.

We measured the accuracy and repeatability of reaching a
desired position in the debridement workspace by executing
an open loop trajectory on the Raven II gold model arm. We
visit each unique end-effector pose 10 times, and measure
the actual state of the end-effector using the PhaseSpace
motion capture setup described in Section V-B. We measure
accuracy by computing the average absolute difference over
all attempts between the desired end-effector state xd and
the observed end-effector state xo after executing the a target
trajectory T . We measure the repeatability by computing the
variance of the observed state xo over all attempts. We chose
10 random foam fragment locations uniformly across the
workspace as in Section V-B, and repeatedly planned and
executed trajectories to reach these locations using trajopt,
a motion planning algorithm based on sequential convex
optimiztion [24].
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Fig. 5. The top graph shows absolute mean position (X, Y, and Z) versus the
number of states used in training and the bottom graph shows rotation (Yaw,
Pitch, and Roll) error versus the number of states used in training. States
were sampled uniformly at random from the full training set of trajectories
without replacement.

We compare the accuracy and repeatabilty of the end-
effector position between using no error correction, applying
the non-linear correction to each step along the trajectory,
and applying the non-linear correction to only the start and
end pose along a trajectory in Table II below. The results
indicate that adding the non-linear correction reduces the
error in end-effector pose by approximately a factor of 10 in
each state dimension. The correction improved repeatability
to less than 1.0 mm using our correction, suggesting that the

drift was systematic. We also get a slight improvement with
endpoint correction.

State
Variable

No
Correction

Full Trajectory
Correction

Endpoint
Correction

tx (mm) 20.3 ± 0.8 1.5 ± 1.1 2.0 ± 0.9
ty (mm) 13.0 ± 2.5 4.9 ± 1.5 3.0 ± 1.0
tz (mm) 22.8 ± 2.9 2.4 ± 1.4 1.0 ± 0.7

TABLE II
MEAN ACCURACY ADN 1-STANDARD DEVIATION OF REACHING

DEBRIDEMENT TASK POSES WITH VARIOUS POLICIES FOR APPLYING

THE NON-LINEAR CORRECTION. WE COMPARE USING NO CORRECTION,
CORRECTING 10 WAYPOINTS ALONG THE DESIRED TRAJECTORY, AND

CORRECTING ONLY THE START AND STOP POSE OF THE TRAJECTORY.

D. Debridement Task Speedup

In our final experiment, we evaulated our controller on the
task of autonomous surgical debridement with foam tissue
fragments. In prior work [10], the robot had to replan its
trajectory at a fixed interval to account for inaccuracies in
the kinematics. We found that the replanning interval was no
longer necessary to complete the task due to our accuracy
of only a few millimeters with open-loop control as reported
in Section V-C. Furthermore, we were able to increase the
speed of the Raven from 1.0 cm per second to 6.0 cm per
second. This resulted in an average task execution time of
15.8 seconds per tissue fragment, 3.8× faster than the fastest
previously reported result, while maintaining the task success
rate [10]. Further information on this research, including
data, code, photos, and video, is available at:
http://rll.berkeley.edu/raven.

VI. DISCUSSION AND FUTURE WORK

We believe that this technique can generalize well to a
broader class of automation problems involving imprecise
state estimates and non-linear models. In future work, we will
explore running this procedure in an online or bootstrapped
setting, where the learning controller incrementally learns
a better model during task execution from the output of
a previously learned controller. We can futher formulate
this problem as a reinforcement learning problem with a
tradeoff between exploration (executing a variety of states
to learn a better model) and exploitation (completing the
desired task). Recent work by Gotovos et al. using Gaussian
Processes to probe the maxima and level sets of functions
could be extended to probe for residual error maxima in our 6
dimensional pose space [4] and concentrate training on parts
of the state space known to have significant non-linearities.

Another particularly promising result is that we were able
to avoid replanning altogether in the surgical debridement
task. However, for more complex tasks this may not be
possible. We will explore not only returning a corrected pose
from our learning controller but also a confidence interval.
This can help us automate replanning if we detect that our
controller’s corrected command is of low confidence.

Finally, repeated executions may change the kinematic
parameters of the robot over time. Consequently, we will



further consider modeling the learning controller’s degrada-
tion over time. This is strongly related to models in reliability
engineering and Mean Time Before Failure analysis. We can
explore the tradeoff between online model learning and batch
re-learing with respect to long-term task reliability.

VII. CONCLUSION

The Raven II surgical robot’s nonlinear kinematics and
inaccessible native controller make precise kinematic con-
trol challenging. We proposed a technique using Gaussian
Process Regression combined with data cleaning and poses
augmented with velocity features to learn a mapping between
commanded states and the observed states with a external
motion capture system. We found that our technique led to
more precise executions of surgical debridement tasks on
the Raven. We showed that including velocity as a feature
in GPR reduced the norm position error by 50% and the
norm angular error by 21% on a set of trajectories recorde
with PhaseSpace motion capture. Furthermore, the addition
of data cleaning reduced the norm position error by an
additional 17% and the norm angular error by an additional
16% over the best result without cleaning on this dataset.
In future work we will apply this approach to a retrofitted
Intuitive da Vinci R© surgical robot to achieve precise control
for executing autonomous tasks such as surgical debridement
and suture tying, and we will make the code available online
at http://rll.berkeley.edu/raven so that others
can experiment with it on other systems such as the Baxter,
Barrett Arm, snake robots, or the ABB IRB 6600.
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