
Dynamic Closed-loop Replanning in Belief Space:
Toward Handling Dynamically Changing Environments
Ali-akbar Agha-mohammadi, Saurav Agarwal, Suman Chakravorty, Nancy M. Amato

Abstract— Motion planning in belief space is a challenging
problem due to the computational intractability of its exact so-
lution. This problem becomes even more challenging in chang-
ing environments. This paper proposes a dynamic replanning
scheme in belief space to handle changes in the environment
(e.g., changes in the obstacle map), as well as unforeseen
large deviations in the robot’s location (e.g., the kidnapped
robot problem). The proposed method utilizes Feedback-based
Information RoadMap (FIRM) framework as a substrate.
However, it circumvents the need for belief stabilization in the
FIRM framework and proposes a more efficient online planning
scheme. We demonstrate the performance of the proposed
method on a physical robot subject to large disturbances and
environmental changes.

I. INTRODUCTION

This paper is concerned with the problem of Partially-
Observable Markov Decision Process (POMDP) [4], which
is a formal framework for sequential decision making under
uncertainty. However, the POMDP problem is notorious for
its computational intractability and developing approximate
solutions for this problem is an ongoing research. Recently,
the Feedback-based Information RoadMap (FIRM) frame-
work [2] has provided a graph-based approach for belief
space planning that significantly reduces the computational
complexity of planning under uncertainty. In this paper we
utilize the structure of FIRM to construct an efficient online
replanning scheme.

Handling changes in the environment (e.g., obstacles),
changes in the goal location, and large deviations in the
robot’s location calls for online planning in uncertain, par-
tially observable environments. One strategy to address this
problem is an ability to dynamically replan in belief space.
In this paper, we propose a principled rollout-based policy
(ROP) algorithm based on the FIRM framework to construct
an online stochastic replanning procedure.

Contributions: Contributions of this method over the
original FIRM framework and receding horizon control-
based (RHC-based) replanning schemes are as follows.

• An important contribution of the proposed work is its
ability to bypass the belief stabilization process of the
FIRM framework when there is no gain in stabiliza-
tion. Thus, it generates plans with higher performance
compared to the original FIRM framework.
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Fig. 1. A picture of robot (iRobot Create) in the operating environment.
Landmarks can be seen on the walls.

• It provides a dynamic replanning scheme that can
handle changes in the environment as well as large
deviations in the system’s state.

• Compared to RHC-based methods in belief space, this
methods realizes a richer replanning scheme by pro-
viding a more accurate approximation in the planning
horizon and incorporating a base cost-to-go beyond the
horizon.

• An upper bound and a lower bound on the overall cost-
to-go and success probability of the generated plan can
be computed.

• Finally, we implement the proposed planner on a phys-
ical robotic system to demonstrate the performance and
robustness of the method.

II. DYNAMIC REPLANNING IN BELIEF SPACE

FIRM graph: FIRM [2] is a “multi-query” graph in belief
space. Each node of FIRM is a small region B = {b : ‖b−
b̀‖ ≤ ε} around a sampled belief b̀. We denote the i-th node
by Bi and the set of nodes by V = {Bi}. Each edge of
FIRM is a local feedback controller, whose goal is to take
the belief from its starting node into its end node. We denote
the edge (controller) between nodes i and j by µij and the set
of edges by M = {µij}. Associating appropriate costs and
transition probabilities to the edges, we can solve a dynamic
programming on the FIRM graph which leads to the optimal
graph policy πg that is a mapping from graph nodes to edges;
i.e., πg : V→ M. We denote the cost-to-go associated with
πg as Jg .

RHC in belief space: In the most common form of RHC
[3] for stochastic systems, the system is approximated with a
deterministic one by replacing the uncertain quantities with
their typical values (e.g., maximum likelihood value). Then at
every step the RHC scheme for deterministic systems solves
an open-loop control problem (i.e., returns a sequence of
actions u0:T ) over a fixed finite horizon T , executes only the
first action u0, discards the remaining actions, and continues
the same procedure in the next time step.



FIRM-based Rollout Policy (FIRM-ROP): Rollout Pol-
icy (ROP) approach [3] is a similar but more powerful
replanning scheme than the described version of RHC in
the following two senses. First, ROP does not approximate
the system with a deterministic one and thus searches for
a sequence of closed-loop policies (instead of open-loop
controls) within the horizon. Second, ROP utilizes a subopti-
mal policy, called the “base policy,” to compute a cost-to-go
function J̃ that approximates the true cost-to-go beyond the
horizon. In other words, at each step of the rollout policy
scheme, the following closed-loop optimization is solved:

π0:T (·) = arg min
Π0:T

E

[
T∑

k=0

c(bk, πk(bk)) + J̃(bT+1)

]
(1)

s.t. bk+1 = τ(bk, πk(bk), zk), zk ∼ p(zk|xk)

xk+1 = f(xk, πk(bk), wk), wk ∼ p(wk|xk, πk(bk))

where c(b, u) is the cost of taking action u at belief b. πk is
the policy at the k-th time step that belongs to Πk. τ is the
filtering equation that generates the next belief bk+1 based
on the current belief bk, control uk, and observation zk+1.
xk is the true system state and p(zk|xk) is the likelihood
distribution. f denotes the state evolution model, where wk

is the process noise. Note that in this formulation all future
observations are taken into account.

Then, only the first control law π0 is used to generate the
control signal u0 and the remaining policies are discarded.
Similar to RHC, after applying the first control, a new
sequence of policies is computed from the new point. In
the FIRM-based rollout policy, we adopt the FIRM policy
as the base policy of the rollout algorithm; i.e., J̃ = Jg .
Accordingly, the cost-to-go and success probability of the
FIRM policy provides an upper and lower bounds for the
cost and success probability of the FIRM-ROP. More details
about this procedure can be found in [1].

Bypassing belief stabilization: In the original FIRM
framework, at the end of each FIRM edge execution, the
belief is stabilized to the end node of that edge. However,
in the proposed framework due to the dynamic replanning
procedure, at every step along the edge the method can
decide to stop following the current edge and start going
toward a new node. In other words if there is not enough
gain in stabilization, the method will bypass it. To elaborate
on this consider an example where we are only interested
in minimizing the collision probability along the way to the
goal. In that case, when the system is not in a narrow passage
or not too close to obstacles, the method will bypass belief
stabilization procedures as they do not affect the success
probability of the mission. However, in narrow passages and
close to obstacles, the method will lead to more conservative
behaviors by stabilizing to FIRM nodes.

Changing environment and large deviations: In general,
handling these cases in belief space is a big challenge as
they require online updating of the planning structure in
belief space. It is important to note that it is the unique
graph structure of FIRM that makes such an update and
replanning feasible in real-time. In case of obstacle map

changes, the graph structure of FIRM allows us to locally
change collision probabilities without affecting the rest of
the graph (i.e., properties of different edges on the graph
are independent of each other). In case of large deviations,
relying on the multi-query aspect of the FIRM graph, we
can query the graph from the new deviated belief without
re-evaluating graph edges. In belief planners that rely on
forward search methods, collision probabilities and costs on
all edges (number of possible edges is exponential in the
number of underlying samples) need to be re-computed.

III. EXPERIMENTAL RESULTS

Next, we demonstrate the ability of the system to perform
long-term tasks in a complex scenario that consists of visiting
several goals (each time the robot reaches a goal, a user
submits a new goal). The replanning ability allows the robot
to change the plan online in belief space as the goal location
changes. Moreover, the robot frequently encounters changes
in the obstacle map (open/closed doors and new obstacles
in the environment) as well as missing information sources
and kidnapped robot situations. Thus, the robot frequently
needs to perform a replanning operation in belief space to
deal with such frequent changes. A 25-minute video of this
run is recorded and available in [5] that shows the robot’s
performance in this complex scenario. In this video, the
robot faces three changes in the goal location, three changes
in the door’s state (open/closed), several new obstacles in
the environment, three kidnapping situations, and numerous
failures of the sensory systems due to missing landmarks,
blur in image, and etc.

IV. CONCLUSION

In this paper, we presented a dynamic replanning scheme
in belief space. Such replanning is a key ability in handling
discrepancies between real world models and computational
models, changes in the environment and obstacles, and large
deviations. We implemented this belief space planner on a
physical system and demonstrated the robustness to such
discrepancies that occur in practice. We believe this work
provides an important step toward making POMDP methods
applicable to real world robotic systems. Investigating the
performance of the method on more challenging systems
such as mobile manipulators is an interesting direction for
future work.
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