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Vision

 We'd like robots to be able to do lots of things
* Need deformable object manipulation
* Ease of programming



Deformable Object Manipulation

High-Dimensional, Continuous State and

Action Spaces
Long Time Horizons

Complex Dynamics
Example: Knot-Tying with the PR2
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Trajectory Transfer

* Planning for deformable object manipulation
is a serious challenge

— Substantial improvements in existing methods
before tractability

e Solution: Don’t plan!

— modify demonstration trajectories to fit the
current situation



Trajectory Transfer: Cartoon Problem
Setting

Train situation:
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Transferring a Trajectory
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Example Trajectory Transfer

J. Schulman, J. Ho, C. Lee, P. Abbeel. ‘Generalization of robotic manipulation through the use of
non-rigid registration.” ISRR 2013.

J. Schulman, A. Gupta, S. Venkatesan, M. Taylor-Frederick, P. Abbeel. ‘A case study of trajectory
transfer through non-rigid registration for a simplified suturing scenario.” IROS 2013.

A. Lee, S. Huang, D. Hadfield-Menell, E. Tzeng, P. Abbeel. ‘Unifying scene registration and trajectory

optimization for learning from demonstrations with application to manipulation of deformable
objects.” IROS 2014
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How do we select the ‘best’
Demonstration?

* Different demonstrations may have very
different results under transfer

— Selecting the wrong one may move to a state
where we don’t have good demonstrations!

e [Schulman et al. ISRR 2013]

— Select nearest neighbor with respect to rigidity of
the transformation

* How to improve on this?
— Need a framework for demonstration selection!



Demo + Transfer Method =2 Policy
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Demo + Transfer Method =2 Policy
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New Scene > ;1 d —>1 New Trajectory
\ y, \ y, \. y,
704 specifies an option l
— Option = policy + termination 4 R
condition Trajectory
— Selecting an option runs the Controller
corresponding policy until the \ y,

termination condition

M < D mmp Mp

Original (intractable) MDP Demonstration Library Options MDP






Takeaways

Heuristic Method from ISRR paper is a policy
for Mp

Learning policies is something we know how
to do

Can we apply that here?
— State space is still a challenge

Solution: use expert knowledge again
— This time about which demonstrations to transfer
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Max-Margin Policy Cloning

[Maximize the Margin]
Prefer Expert ]

. Selections
min | w' w

w

s.t. ergb(s, dowp) > w' @(s,d) 4 1;Vs ]

Details

* Expert Selections gathered by watching multiple
transfers from same state and selecting best’

e Structured margin to capture similarity between
demonstrations

* Slack variables to cope with sub-optimality in choices



Max-Margin Q-function Estimation

* Policy Cloning is good, but has some drawbacks
— Ranking function has no natural interpretation
— No direct notion of progress
— No comparisons between states

e We have a bunch of other information

— Cost function for MDP, Bellman constraints on value
function...etc

* Solution: modify Max-Margin Policy Cloning to
learn an approximate Q-function



Max-Margin Q-function Estimation
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Evaluation on Overhand Knot-Tying

 Distribution over initial states

— Initial states from demonstrations with 10cm perturbations at 7
random locations along rope

 Compare success rate for tying overhand knot on 500 perturbed
instances

Example Initial State

Samples from Perturbed Distribution



Evaluation on Overhand Knot-Tying

Success Rate
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Search

We have an estimate of the Q-function

If we have access to a simulator, we can do a
local expansion of the state space graph

Select the action that maximizes the Q-
function at the search horizon

Large Branching Factor = Beam Search



Evaluation on Overhand Knot-Tying
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Next Steps

* More difficult tasks
— More complex knots = longer time horizon

e Other robots

— Humanoid robot demonstration from motion
capture

— More complicated end effectors

* Transferring more than trajectories?
— Linear Feedback controllers? Arbitrary policies?



