Learning to Select Expert Demonstrations for Deformable Object Manipulation

Dylan Hadfield-Menell, Alex Lee, Sandy Huang, Eric Tzeng, Pieter Abbeel
Workshop on Information-Based Grasp and Manipulation Planning
July 13, 2014
RSS 2014

Vision

- We'd like robots to be able to do lots of things
- Need deformable object manipulation
- Ease of programming

Deformable Object Manipulation

- High-Dimensional, Continuous State and Action Spaces
- Long Time Horizons
- Complex Dynamics
- Example: Knot-Tying with the PR2

Trajectory Transfer

- Planning for deformable object manipulation is a serious challenge
 - Substantial improvements in existing methods before tractability
- Solution: Don't plan!
 - modify demonstration trajectories to fit the current situation

Trajectory Transfer: Cartoon Problem Setting

Train situation:

Trajectory demonstration

What trajectory here?

Transferring a Trajectory

Example Trajectory Transfer

- J. Schulman, J. Ho, C. Lee, P. Abbeel. 'Generalization of robotic manipulation through the use of non-rigid registration.' ISRR 2013.
- J. Schulman, A. Gupta, S. Venkatesan, M. Taylor-Frederick, P. Abbeel. 'A case study of trajectory transfer through non-rigid registration for a simplified suturing scenario.' IROS 2013.
- A. Lee, S. Huang, D. Hadfield-Menell, E. Tzeng, P. Abbeel. 'Unifying scene registration and trajectory optimization for learning from demonstrations with application to manipulation of deformable objects.' IROS 2014

How do we select the 'best' Demonstration?

- Different demonstrations may have very different results under transfer
 - Selecting the wrong one may move to a state where we don't have good demonstrations!
- [Schulman et al. ISRR 2013]
 - Select nearest neighbor with respect to rigidity of the transformation
- How to improve on this?
 - Need a framework for demonstration selection!

Demo + Transfer Method - Policy

Demo + Transfer Method - Policy

M

 \mathcal{D}

 $M_{\mathcal{D}}$

Original (intractable) MDP Demonstration Library

Options MDP

 $M_{\mathcal{D}}$ MVS

$ \mathcal{A} $	\mathbb{R}^{14}	$ \mathcal{D} \approx 150$
H	≈ 100	pprox 4

H	≈ 100	≈ 4
$ \mathcal{S} $	\mathbb{R}^{230}	\mathbb{R}^{230}

Takeaways

- Heuristic Method from ISRR paper is a policy for $M_{\mathcal{D}}$
- Learning policies is something we know how to do
- Can we apply that here?
 - State space is still a challenge
- Solution: use expert knowledge again
 - This time about which demonstrations to transfer

Max-Margin Policy Cloning

Max-Margin Policy Cloning

Details

- Expert Selections gathered by watching multiple transfers from same state and selecting `best'
- Structured margin to capture similarity between demonstrations
- Slack variables to cope with sub-optimality in choices

Max-Margin Q-function Estimation

- Policy Cloning is good, but has some drawbacks
 - Ranking function has no natural interpretation
 - No direct notion of progress
 - No comparisons between states
- We have a bunch of other information
 - Cost function for MDP, Bellman constraints on value function...etc
- Solution: modify Max-Margin Policy Cloning to learn an approximate Q-function

Max-Margin Q-function Estimation

Evaluation on Overhand Knot-Tying

- Distribution over initial states
 - Initial states from demonstrations with 10cm perturbations at 7 random locations along rope

Compare success rate for tying overhand knot on 500 perturbed instances

Example Initial State

Evaluation on Overhand Knot-Tying

Success Rate

Search

- We have an estimate of the Q-function
- If we have access to a simulator, we can do a local expansion of the state space graph
- Select the action that maximizes the Qfunction at the search horizon
- Large Branching Factor → Beam Search

Evaluation on Overhand Knot-Tying

Next Steps

- More difficult tasks
 - More complex knots → longer time horizon
- Other robots
 - Humanoid robot demonstration from motion capture
 - More complicated end effectors
- Transferring more than trajectories?
 - Linear Feedback controllers? Arbitrary policies?