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I. INTRODUCTION

Service robots are being used more and more in complex
unstructured environments. In these kind of environments,
robotic manipulation has become important for performing
a wide variety of tasks such as moving coffee cups into
the dishwasher, clearing toys, or handing over medicine.
However, manipulation of objects using imperfect sensors is
hard, especially when objects occlude each other.

In this paper, we investigate multi-object manipulation in
crowded scenes. Because of noise in the captured images, and
object occlusions, the robot has incomplete information about
the objects and the environment. Moreover, we assume that
the dynamics of environment are partly unknown supporting
the goal of long term robotic autonomy. A high-level research
question is in which situations explicit planning under uncer-
tainty is beneficial. Non-myopic information gathering actions
could be beneficial in situations in which the robot does not
directly observe object attributes, for example, when an object
is occluded the robot could try to remove the occlusion in order
to see the object better. Moreover, the robot could benefit from
considering long term effects of actions. For example, when
occlusions make grasping harder, the optimal combination of
information gathering actions and actions that move objects
away, may be non-trivial.

Because of the uncertainty about the state of the world, dy-
namics, and action effects we model multi-object manipulation
of crowded occluded objects as a partially observable Markov
decision process (POMDP). A POMDP takes into account both
partial and noisy sensor readings, and the uncertainty in world
transitions. In a POMDP, the objective is encoded using a
reward function and therefore our multi-object manipulation
approach can be used in various setups. Because occlusion
is a dominating source of uncertainty in crowded scenes, the
probabilities in our POMDP model depend on a model-free
occlusion ratio parameter which indicates how much an object
occludes another one. Furthermore, because objects differ and
we have no prior object model, we adapt the grasp probability
of each object according to grasp success observations, also
during POMDP planning.

In order to plan manipulation actions, we present a new
approximate POMDP method that produces compact policies
for large complicated problems, allowing a human to inspect
the policy and potentially modify problem preferences. In
addition to offline planning, the method can be used for online

planning which allows re-estimation of the current belief
from sensor measurements at each time step, correcting for
“mistakes” in the world model.

While POMDPs have been used in different robotic appli-
cations, to the best of our knowledge they have previously
not been applied to multi-object manipulation in an (partly)
unknown crowded high dimensional environment. In the ex-
periments, we evaluate our approach in simulation and in
physical experiments with a real robotic arm. The experimental
results indicate that 1) multi-step planning under uncertainty
is beneficial for multi-object manipulation in crowded envi-
ronments, and that a greedy approach is not enough, 2) online
planning allows adapting the model dynamics according to
experience.

Fig. 1. Experimental setup. Left: A Kinova Jaco robotic arm manipulates
objects on a table. A Microsoft Kinect captures RGB-D point clouds. In the
experiments, robot tries to pick up dirty objects, here cups with green parts,
from the table and place them into the “dishwasher” (blue box on the far left).
Right: Cropped Kinect image. Object edges in blue.

II. MULTI-OBJECT MANIPULATION AS A POMDP

In this paper, in each time step, a visual sensor captures an
image, the robot decides which manipulation action to perform
based on the captured image, and then a robotic arm executes
the action. We consider an environment where multiple objects
may occlude each other. In addition, the image captured by the
visual sensor is noisy. We assume that a model of the objects
is not available, meaning, that grasping an object may fail. We
will now shortly describe what a POMDP is and then discuss
how to model multi-object manipulation as a POMDP.

In a POMDP, at each time step: 1) the agent (the robot)
executes an action, 2) the agent receives a reward depending on
the current state and executed action, 3) the system moves to
a new state according to the transition probability conditional
on the current state and executed action, and 4) the agent
makes an observation according to the observation probability
conditional on the new state and executed action. When given
the transition and observation probabilities, a reward function,
and a probability distribution over current world states, a



POMDP defines the optimal action to execute. We will next
describe how we model the state of the world in multi-object
manipulation, and how we estimate transition and observation
probabilities in crowded scenes.

State space and actions. In our multi-object manipulation
model, the state space consists of semantic object locations
(e.g. “on table”, “in a dishwasher”), object attributes (e.g.
“clean”, “dirty”), and a history of observations and action
successes for each object. The model assumes constant se-
mantic object locations over time unless a manipulation action
successfully changes those locations. Note that because we use
online planning, the planning always restarts from a belief that
takes into account the most recent sensory data.

Occlusion ratio. In crowded environments, occlusions can
be the dominating source of uncertainty. Grasping an object
when behind another object, and thus occluded, is usually
harder than when the object is not occluded at all. Similarly,
observing the object attributes correctly is harder when the
object is occluded. Therefore, our transition and observation
probabilities depend on a model-free occlusion ratio parame-
ter: with more occlusion the probability of action success and
the probability of making correct observations decrease. We
compute the occlusion ratio using 2D object edge information.

Observation and grasp probabilities. We assume that the
semantic locations and dependencies (which cup is in front
of which cup) are fully observed and that grasp success is
also fully observed. Both the probability to successfully grasp
an object and the probability to correctly observe an object’s
attributes decrease when the occlusion increases. The grasping
success probability differs between objects. Therefore, in
addition to the occlusion specific grasp probability, each object
has an inherent grasp success probability which is not known
a priori but, instead, learned from observations.

POMDP method. In order to construct compact plans for
the high dimensional problem of multi-object manipulation,
both offline and online, we present a new POMDP method
[1]. The method is based on the offline monotonic policy graph
improvement algorithm for “flat” state representations in [2].
It uses a particle based probability distribution representation
to improve a fixed size policy graph iteratively. Because the
policy graph has fixed size, computation time can be fixed
in advance. Moreover, the resulting compact policy can be
inspected by a domain expert to gain insight into the problem.

III. DIRTY CUPS INTO THE DISHWASHER

In the experiments, a 6-DOF Kinova Jaco robot arm tries to
move dirty cups into a dishwasher; a Microsoft Kinect RGB-D
sensor observes the scene. The robot can either lift an object,
move an object into the dishwasher, or finish. Lifting an object
allows the robot to see behind it accruing a reward of −1 for
the time spent. Moving a dirty cup into the dishwasher yields
a reward of +5, and moving a clean cup into the dishwasher
−10. Finishing will yield a −5 for each dirty cup on the table.
The left side of Fig. 1 shows the experimental setup. Note that
our multi-object manipulation approach is not restricted to this
specific setup or objects. The right side of Fig. 1 shows an

example of an Kinect image. Object edges are marked with a
blue color.

In the experiments, we initialized parameters of the grasp
and observation probabily distributions by trying out grasps
using the Kinova Jaco arm and observing objects for different
occlusion ratios. We ran two sets of experiments. In the first set
we verified world model assumptions using the Kinova Jaco
arm (see Section 4.2 in [1] for details). In the second set we
simulated world dynamics (which were estimated from real
visual scenes and real robotic grasps) in order to get a large
number of repetitions. For this set Fig. 2 shows experimental
results for ten scenes captured by a Kinect sensor (Fig. 3
in [1] shows the scenes). The POMDP approach performed
better than greedy heuristics. Perhaps surprisingly, planning
three time steps into the future worked better than planning
for only two time steps. Intuitively, one could imagine that
simple action sequences such as lift cup up, and if cup
behind lifted cup is dirty, then move it into dishwasher could
perform as well as more complicated plans. However, the
resulting conditional POMDP plans contain complex behavior
(see Fig. 5 in [1] for an example).
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Fig. 2. The average reward sum and its 95% confidence interval (computed
using bootstrapping) for the heuristic manipulation approach, heuristic ma-
nipulation approach utilizing grasp history information, and for the POMDP
planning method.

IV. CONCLUSION

This paper shows how to model multi-object manipulation
in crowded environments as a POMDP. In the proposed model
observation and grasp success probabilities depend on object
occlusions, a significant source of uncertainty in crowded
scenes. The model adapts grasp probabilities according to
observations. Experimental results show that greedy heuristic
approaches are not sufficient, and that multi-step POMDP
planning achieves higher performance.
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