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Motivation
Humans can transfer grasps between similar ob-
jects such as various types of hammers, cups,
or bottles. In robotics, on the other hand, a
common approach to grasp synthesis has been
to solve the grasping problem for each object in-
stance by completely reinitializing the developed
algorithms at hand. We are interested in de-
veloping a representation of the space of object
shapes and grasps – a Grasp Moduli Space [2, 3] –
where both objects and grasps can continuously
be deformed in order to reason about, generalize
and transfer grasps.

Grasp Moduli Spaces
A point-contact Grasp Moduli Space G consists
of grasps g with m contact points ci, normals ni
and an object center of mass z, where each g =
(c1, . . . , cm, n1, . . . , nm, z) ∈ R3m × (S2)m × R3

is constrained by a surface Sh in a continuously
parametrized family {Sh : h ∈ M} of surfaces
and where G is designed with the following goals:

• G captures a large family of surfaces.

• In G, grasps and shapes can jointly be de-
formed and optimized, e.g. with respect to
the L1 grasp quality measure of [4].

• We can define probability distributions
over grasps and shapes in G to reason about
grasp configurations probabilistically.

• We can endow G with a metric to study
deformations in grasps and shapes.

Shape space representations

Two classes of shape representations are para-
metric surfaces and implicit surfaces. In [2],
we considered the shape space Mcyl of smooth
parametric surfaces with cylindrical coordinates
Sf,a,b = {(f(u, θ) cos θ, f(u, θ) sin θ, (1 − u)a +
ub) : u ∈ [0, 1], θ ∈ S1}, f : [0, 1] × S1 → R>0,
a < b and defined a resulting Grasp Moduli
Space Gcyl(m).

Grasp/shape space induced by 3 surfaces from [2].

Gcyl(m) =Mcyl × [0, 1]m × (S1)m
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Parametric Surfaces and Grasp Moduli Spaces
In [3], we performed least-squares regression using a spherical harmonics based expansion of smooth
surfaces S from point-cloud data. In our experiments, this resulted in a Grasp Moduli Space isomor-
phic to Grad = R2601 × (S2)m, where x ∈ R2601 determines a smooth parametric surface and each
(θ, ϕ) ∈ S2 determines a contact point on such a surface. This approach is applicable for surfaces that
are homeomorphic to spheres and for point-clouds for which spherical coordinates can be determined.

Example grasp transfer via a joint object/grasp deformation and optimization in Grad.

Grasp optimization in Grad with
fixed shape coordinate [3].

Initial vs. final grasp quality with
grasp optimization in Grad on fixed
surfaces [3].

Initial vs. final grasp quality with
grasp optimization and transfer in
Grad [3].

Implicit Surfaces and Grasp Moduli Spaces
In our current work, we start with haptic and visual (kinect) data and represent a surface as
Sf = f−1(0) for a function f : R3 → R which we determine via Gaussian Process Regression.
The figures in the 2nd and 6th column below show such reconstructions for two kernel choices:

the Matérn kernel kν= 3
2
(xi, xj) = (1 +

√
3r
l ) exp(−

√
3r
l ) (first row) and the thin-plate kernel

k(xi, xj) = 2 |r|3 − 3Rr2 + R3 (second row) where r = |xi − xj |. Here, shapes are now continuously
parametrized by GP means and each grasp contact point ci on Sf has to satisfy f(ci) = 0. Surface
normals can then be calculated using this equation.

Shape approximations from haptic (blue) and single-view kinect (red) data and shape deformations using a convex
combination of the corresponding GP means.

Using the GP’s Variance
By iteratively touching points with maximal
uncertainty under the GP regression model, we
showed in [1] how a reconstruction from single
view kinect data can be improved using a haptic
exploration with a Schunk Dexterous Hand.

Evolution of implicit shape approximation as more
tactile data becomes available and where the objects are

positioned to show the back-side not visible from a
single-view kinect capture (from [1]).

Open Challenges
Many interesting open problems exist in devel-
oping a full grasp/shape representation based on
our approach:

• Which optimization methods are most ef-
fective in optimizing a grasp’s quality, and
more generally a grasp’s task specific util-
ity, in a general Grasp Moduli Space where
shapes are parametrized using Gaussian
Processes?

• How can the GP’s variance information be
incorporated in a deformation-based grasp
synthesis framework?

• How can grasp configurations best be mod-
eled probabilistically in conjunction with
the GP’s shape estimate?

• How can prototypical grasp/shape configu-
rations in G be determined automatically?


