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MOTIVATION

Humans can transfer grasps between similar ob-
jects such as various types of hammers, cups,
or bottles. In robotics, on the other hand, a
common approach to grasp synthesis has been
to solve the grasping problem for each object in-
stance by completely reinitializing the developed
algorithms at hand. We are interested in de-
veloping a representation of the space of object
shapes and grasps — a Grasp Moduli Space |2, 3] —
where both objects and grasps can continuously
be deformed in order to reason about, generalize
and transfer grasps.

(GRASP MODULI SPACES

A point-contact Grasp Moduli Space G consists
of grasps g with m contact points ¢;, normals n;
and an object center of mass z, where each g =
(Cly ey Cons M1y e e ey T, 2) € RI™ x (S%)™ x R?
is constrained by a surtace S; In a continuously
parametrized family {Sy, : h € M} of surfaces
and where G is designed with the following goals:

e ( captures a large family of surfaces.

e In ¢, grasps and shapes can jointly be de-
formed and optimized, e.g. with respect to
the L1 grasp quality measure of [4].

e We can define probability distributions
over grasps and shapes in G to reason about
orasp configurations probabilistically:.

e We can endow G with a metric to study
deformations in grasps and shapes.

Shape space representations

Two classes of shape representations are para-
metric surfaces and implicit surfaces. In [2],
we considered the shape space MY of smooth
parametric surfaces with cylindrical coordinates
Stapr = {(f(u,0)cos0, f(u,0)sind, (1 — u)a +
ub) : u € [0,1],0 € S}, f:[0,1] x S' — Ry,
a < b and defined a resulting Grasp Moduli
Space GV (m).
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Grasp/shape space induced by 3 surfaces from [2].

(0.8,0.1,0.1)

GV (m) = MY x [0,1]™ x (S1)™
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PARAMETRIC SURFACES AND GRASP MODULI SPACES

In [3], we performed least-squares regression using a spherical harmonics based expansion of smooth
surfaces S from point-cloud data. In our experiments, this resulted in a Grasp Moduli Space isomor-
phic to G = R201 x (S2)™ where x € R?°0! determines a smooth parametric surface and each
(0, ) € S* determines a contact point on such a surface. This approach is applicable for surfaces that
are homeomorphic to spheres and for point-clouds for which spherical coordinates can be determined.
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Example grasp transfer via a joint object/grasp deformation and optimization in G".
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Initial vs. final grasp quality with
grasp optimization and transfer in

grad [3] .

Initial vs. final grasp quality with
grasp optimization in G"%% on fixed
surfaces [3].

Grasp optimization in G"%¢ with
fixed shape coordinate [3].

IMPLICIT SURFACES AND GRASP MODULI SPACES

In our current work, we start with haptic and visual (kinect) data and represent a surface as
Sy = f710) for a function f : R® — R which we determine via Gaussian Process Regression.
The figures in the 27¢ and 6!" column below show such reconstructions for two kernel choices:

the Matérn kernel k,_s(zi,z;) = (1 - \/lgr) exp( \/l§r) (
k(zi,xj) =2 7| — 3Rr?2 + R3 (second row) where r = |z; — z;|. Here, shapes are now continuously
parametrized by GP means and each grasp contact point ¢; on Sy has to satisfy f(c;) = 0. Surface
normals can then be calculated using this equation.

first row) and the thin-plate kernel

Shape approximations from haptic (blue) and single-view kinect (red) data and shape deformations using a convex
combination of the corresponding GP means.

OPEN CHALLENGES

Many interesting open problems exist in devel-
oping a full grasp/shape representation based on
our approach:

UsSING THE GP’Ss VARIANCE

By iteratively touching points with maximal
uncertainty under the GP regression model, we
showed in [1| how a reconstruction from single
view kinect data can be improved using a haptic

exploration with a Schunk Dexterous Hand. e Which optimization methods are most ef-

fective in optimizing a grasp’s quality, and
more generally a grasp’s task specific util-
ity, in a general Grasp Moduli Space where
shapes are parametrized using (Gaussian
Processes?

e How can the GP’s variance information be
incorporated in a deformation-based grasp
synthesis framework?

e How can grasp configurations best be mod-
eled probabilistically in conjunction with
the GP’s shape estimate?

Evolution of implicit shape approximation as more
tactile data becomes available and where the objects are
positioned to show the back-side not visible from a
single-view kinect capture (from [1]).

e How can prototypical grasp/shape configu-
rations in G be determined automatically?



