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Abstract—In this paper, we introduce initial work on an any-
time optimal sampling-based planning algorithm, Batch Informed
Trees (BIT*). BIT* unifies the developments of Optimal RRT
(RRT*) and Fast Marching Trees (FMT*) while extending them
with a heuristic. An overview of the algorithm and some initial
results are presented, along with a discussion of ongoing future
work. As is demonstrated, this new algorithm shows promise
compared to RRT* and FMT* in terms of computational cost
required to find equivalent solutions.

I. INTRODUCTION

There has been a renewed interest in sampling-based plan-
ning algorithms that probabilistically find the optimal solution
to a given planning problem. A recent major contribution was
by Karaman and Frazzoli [7], who developed optimal versions
of Probabilistic Roadmaps (PRMs) [8] (PRM*) and Rapidly-
exploring Random Trees (RRTs) [9] (RRT*) by leveraging the
statistical properties of random geometric graphs (RGGs) [10].

RRT* is an anytime algorithm that finds an initial solution
and then asymptotically converges to the optimal solution.
Janson and Pavone [6] use similar algorithmic principles in
their Fast Marching Trees (FMT*) algorithm to process a
batch of samples in order of increasing cost-to-come. This
order removes the need for rewiring and is an example of
dynamic programming [1] or Dijkstra’s algorithm [2] for a
Euclidean cost-function on an RGG. While FMT* calculates
the optimal path for the given samples, it is not anytime and
further improvement of the solution requires calculating a new
tree through a denser set of samples.

In this paper, we present a novel sampling-based algorithm
that unifies the anytime nature of RRT* with the ordered
processing of FMT*. It does this in an efficient manner by
using heuristics, as found in A* [5], and multiple batches of
samples. While analysis is preliminary, initial results in R2

(Figs. 1, 2) and R8 (Fig. 3) show that it outperforms RRT*
and FMT* in terms of computational cost to find equivalent
results while still providing an anytime solution.

The remainder of this abstract is organized as follows. Sec-
tion II informally presents the Batch Informed Trees (BIT*)
algorithm, while Section III discusses ongoing work. A more
detailed explanation of BIT* is available in [4].
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Fig. 1. An example of RRT* and BIT* run on a difficult random R2 world
for the same arbitrary computational time. BIT*’s use of heuristics allows it to
find a better solution (c = 1.30) faster than RRT* (c = 1.54) by performing
its search in a principled manner that initially prioritizes low-cost solutions and
then focuses on improving them. Cyan dots and blue lines represent vertices
and edges, respectively, in the resulting tree.

II. BATCH-INFORMED TREES (BIT*)

BIT* combines the anytime nature of RRT* with the
ordered expansion of FMT* with a heuristic multiple-batch
approach. By processing the vertices in batches of size greater
than one, BIT* is able to search in an efficient manner, like
FMT*. By processing multiple batches, it is able to return
solutions in an anytime manner, like RRT*.

Informally, BIT* works as follows. We start with a tree,
T , consisting of the initial states, {xs}. A batch of ni = n′

uniformly-distributed random samples are drawn from the
obstacle-free problem space, Xfree. These samples, the vertices
in the tree, and the connection condition described by Karaman
and Frazzoli [7] (i.e., a radius of connection or a number of
near vertices) describe an RGG. We then build a shortest-
path spanning tree through this RGG by incrementally adding
edges between vertices on the existing tree and unconnected
samples. The use of a heuristic allows each iteration to process
the edge belonging to the best potential solution given our
information. This prioritizes both growth towards the goal and
the exploration of high-quality paths.

If the processed edge is collision-free, we add it to the tree
and add any edges between it and nearby unconnected samples
to our queue of edges. Depending on the heuristic used, or if
this is not the first batch, we must also search for rewirings
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Fig. 2. An example of RRT*, Informed RRT* [3], FMT* (n = 5000) and BIT* run on a random R2 world. Each algorithm was run until it found a
equivalent solution to FMT* (c = 1.34). BIT*’s use of heuristics allows it to find such a solution significantly faster (t = 0.0485s) than RRT* (t = 11.8s),
FMT* (t = 1.72s) and Informed RRT* (t = 1.57s) by performing its search in a principled manner that initially prioritizes low-cost solutions and then
focuses on improving them. Cyan dots and blue lines represent vertices and edges, respectively, in the resulting tree.
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Fig. 3. The median solution cost versus run time for 20 different experiments
on a typical random world in R8 for RRT*, Informed RRT*, BIT* with a
batch size of 5000, and FMT* with n = 1000, 2500, &5000. The dashed
line represents a median calculated from a number of solutions between 10
and 20 and the solid line the median once all 20 runs had found a solution
with error bars denoting a non-parametric 95% confidence interval. Note that
BIT* outperforms all the other planners.

that improve the tree. As in RRT*, we only perform these
rewiring locally and do not reevaluate the descendents. We
continue processing this queue until it is empty.

If we exhaust the edge queue without finding a path to
the goal, we generate n′ new samples in Xfree and update the
existing tree from the combined set of samples ni+1 = ni+n′

with an updated radius of connection.

We find a first solution when we add a goal state, xg, to the
tree, but we continue to process the edge queue for as long as it
could provide a better solution. If further improvement is still
required when the edge queue is empty, we add a new batch
of samples and search the resulting combined set of samples,
ni+1 = ni + n′. The new samples are not drawn from the
entire planning domain but from the subset of the problem that
contains possibly better solutions. This heuristically informed
subset, Xf̂ ⊆ Xfree, is defined by the cost of the solution path
[3]. This method maintains a uniform density over subdomain
of the problem being searched, a common assumption for
RGG properties.

Details are omitted here for brevity, but in practice we
extend the basic BIT* algorithm described above with methods
to generate the free samples and the edge queue in a just-in-
time manner as well as graph and sample pruning [4].

III. DISCUSSION & CONCLUSION

Initial qualitative results suggest that BIT* effectively com-
bines the benefits of FMT* and RRT*. It does this for
problems seeking to minimize path length by using Euclidean
distance as a heuristic to process batches of samples.

Using a heuristic not only prioritizes better initial solutions,
but it also helps focus future refinement to the subset of states
that can improve the solution. For high-dimensional problems
(e.g., manipulation planning) seeking to minimize path length,
direct sampling of this subset is generally required as the
probability of improving the solution with uniform global
sampling goes to zero as the size of the problem increases
or the quality of the solution improves [3].

Ongoing work focuses on performing thorough experimen-
tal and theoretical comparisons of BIT* to existing optimal
sampling-based planning algorithms [4].
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