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Abstract—Autonomy requires robots to learn models of the en-
vironment or objects while simultaneously searching for solutions
in the partially observable state space. A flexible representation
that supports incremental acquisition of models has several
advantages for solving such tasks. In this paper, we investigate the
use of graphs to capture the interaction statistics of an agent with
aspects of the environment. We present a planner that employs
a set of incomplete models for action selection. The approach
is evaluated using the Robonaut 2 simulation in the context of
object modeling and planning.

I. INTRODUCTION

An intelligent agent must reason about its own skills,
and about the relationship between these skills and goals
under run-time conditions. This requires the agent to represent
knowledge about its interactions with the world in a manner
that supports reasoning [2]. Since the early 1970s, the AI and
robotics communities have been concerned with the design of
efficient representations that support modeling and reasoning.
However, most of these representations tend to tackle only
one part of the problem—making either the modeling or the
reasoning problem easier.

This paper addresses these dual problems of modeling
and reasoning by employing a representation grounded in
the robot’s own actions and perceptions [1]. Our description
of state is domain general, as it is computed directly from
the status of executable actions and not hand built for a
specific task. The relationship between state and action is
captured using probabilistic data structures that model objects
in the environment [4]. We present a planner that exploits the
uniform description of state and the probabilistic models to
plan efficiently in partially observed environments.

II. MODEL LEARNING

An object in our framework is represented using a directed
graph G = (X ,U), composed of a set of aspect nodes X
connected by a set of action edges U that capture the proba-
bilistic transition between the aspect nodes. Each aspect x ∈ X
represents the properties of an object that are measurable given
a set of sensor parameters. We call this graph that summarizes
empirical observations of the aspect transitions in the course
of interaction an Aspect Transition Graph (ATG).

The ATG of an object is complete if it contains all possible
aspect nodes and node transitions. However, in practice, when
ATGs are learned through exploration they are often incom-
plete. In addition, an object might be represented by multiple
(incomplete) ATGs. A complete model is more informative

but harder to learn autonomously. In this paper, we will focus
on handling incomplete object models.

An ATG is added to the robot’s memory M only if the
presented object is inferred to be novel. Let ST−1 denote the
set of objects that have been presented to the robot in the first
T −1 trials. Given a sequence of observations z1:t and actions
a1:t during trial T , the probability that the presented object
OT during trial T is novel can be calculated;

p(OT /∈ ST−1|z1:t, a1:t,M)

=
∑

oi /∈ST−1

p(OT = oi|z1:t, a1:t,M)

=
∑

oi /∈ST−1

∑
xt∈Xi

p(xt|z1:t, a1:t). (1)

The set oi ∈ O consists of all the objects in the environ-
ment. The set xt ∈ Xi consists of all the aspects generated
form object oi. The conditional probability p(xt|z1:t, a1:t) of
observing an aspect can be inferred through the Bayes filter
algorithm [5]. The presented object OT is classified as novel
if p(OT /∈ ST−1|z1:t, a1:t,M) > 0.5.

III. TASK-LEVEL PLANNING

The challenge of integrating task-level planners with partial
models requires dealing with the partial observability of the
state while building plans. Since the true state of the system
cannot be observed, it must be inferred from the history of
observations and actions. Our planner belongs to a set of
approaches [3] that select actions that reduce the uncertainty
of the state estimate maximally with respect to the task.

Object recognition can be viewed as a process in which the
uncertainty over object identities (as quantified by the object
entropy) is reduced with each observation. Our task planner
selects the action at that minimizes the expected entropy of
the random variable OT representing the object identity;

argmin
at

E(H(OT |zt+1, at, z1:t, a1:t−1))

= argmin
at

∑
zt+1

H(OT |zt+1, at, z1:t, a1:t−1)×

p(zt+1|at, z1:t, a1:t−1). (2)



Fig. 1. The simulated Robonaut 2 interacting with a box.

IV. EXPERIMENTS

We evaluated the capabilities of our model and planner
using a Robonaut 2 simulator as shown in Figure 1. The
simulation contains 100 unique objects called ARcubes that
consist of a 28cm cube with unique combinations of ARtags
on the six faces; 12 different ARtag patterns are used in this
experiment. In an ATG for an ARcube, an aspect consists of
ARtag features observed on 2 faces. Each ATG has 24 unique
aspects and each aspect has 132 different pattern combinations.
For the sake of simplicity, we assume that an object does not
have two faces with the same ARtag. The robot can perform
3 different manipulation actions on the object: 1) flip the top
face of the cube to the front, 2) rotate the left face of the cube
to the front, and 3) rotate the right face of the cube to the
front.

Table I shows the result of using the planner to recognize
the object presented. Each test involves 100 trials and starts
with an empty robot memory M. In each trial, the task is
to decide which ATG in memory the experiment corresponds
to or to declare it as a new object. For each trial, an object
is chosen at random and presented to the robot. The robot
observes the object and executes an action. This process is
repeated 20 times. At the end of each trial the robot determines
the likelihood that the presented object is novel and the most
likely existing object in memory is identified.

The last row in Table I presents the results averaged over all
the tests. The success rate is the percentage of objects correctly
classified, that is, correctly identified in memory or declared
as a novel object. The system correctly recognizes the object
100% of the time, and correctly determines if the presented
object is novel or not 98.8% of the time.

We also tested the efficiency of the planner against a
random policy. The number of actions executed per trial were
varied from 4 to 20. Figure 2 shows how the success rate
of a test varies with the number of actions executed per
trial. As is evident from the plots, the information theoretic
planner outperforms a random exploration policy for all cases
except when the number of actions per trial is low. Both
algorithms perform equally poor when not enough information

TABLE I
THE SUCCESS RATE OF AN INFORMATION THEORETIC PLANNER IN

RECOGNIZING THE OBJECT (20 ACTIONS PER TRIAL)

Test Correct Identification Correct Recognition Success Rate
1 100/100 34/34 100%
2 98/100 32/32 98%
3 98/100 40/40 98%
4 99/100 37/37 99%
5 99/100 32/32 99%

average 98.8% 100% 98.8%

Fig. 2. The plot shows the average success rate of 10 tests as the number of
actions per trial are increased. Selecting actions that minimize entropy leads
to a higher success rate then selecting actions at random.

is provided.

V. CONCLUSION

This paper describes an incremental learning framework
for building a memory of objects through interaction. We
presented a Bayes framework that performs inference over
incomplete object models. We then showed the strengths of
combining this representation with a Belief-space planner. For
future work, we are planning to test our algorithm on objects
without fiducial markers and are interested in studying when to
merge incomplete object models from different trials. We are
also exploring how a belief space planner can be used to solve
tasks involving multiple objects in the scene and extensions
of the idea that can incorporate multi-modal sensory features
like tactile data and temporally extended actions.
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