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Abstract—Autonomy requires robots to learn models of the en-
vironment or objects while simultaneously searching for solutions
in the partially observable state space. A flexible representation
that supports incremental acquisition of models has several
advantages for solving such tasks. In this paper, we investigate the
use of graphs to capture the interaction statistics of an agent with
aspects of the environment. We present a planner that employs
a set of incomplete models for action selection. The approach
is evaluated using the Robonaut 2 simulation in the context of
object modeling and planning.

I. INTRODUCTION

An intelligent agent must reason about its own skills,
and about the relationship between these skills and goals
under run-time conditions. This requires the agent to represent
knowledge about its interactions with the world in a manner
that supports reasoning [4]. Since the early 1970s, the AI and
robotics communities have been concerned with the design of
efficient representations that support modeling and reasoning.
However, most of these representations tend to tackle only
one part of the problem—making either the modeling or the
reasoning problem easier.

This paper addresses these dual problems of modeling and
reasoning by employing a representation grounded in the
robot’s own actions and perceptions [3]. Our description of
state is domain general, as it is computed directly from the
status of executable actions and not hand built for a specific
task. The relationship between state and action is captured
using probabilistic data structures that model objects in the
environment [14]. We present a planner that exploits the
uniform description of state and the probabilistic models to
plan efficiently in partially observed environments.

II. RELATED WORK

Planning based on belief was introduced by Sondik [17] [16]
in solving the optimal control problem characterized by the
partially observable Markov decision processes (POMDPs).
The value iteration algorithm for solving POMDP was further
improved by many authors [5] [11] to solve larger problems.
However, the maximum number of states these algorithms can
handle is still largely restricted since a POMDP planner must
reason in the continuous belief space that has a dimension
equal to the number of states minus one.

In this paper, we select a recognition task similar to the
simultaneous localization and mapping (SLAM) problem in-
troduced in [8] to demonstrate the capability of our model.
Instead of building a map while localizing the robot, our

Fig. 1. An example of an incomplete aspect transition graph (ATG) of a
cube. Each aspect consists of an observation of two faces of the cube. The
lower right figure shows the coordinate frame of the actions and the aspect in
the upper right is the “collection node” representing all unknown aspects of
the object that may be present. Each solid edge represents a transition between
aspects associated with a particular action. Each dotted edge is a transition
that may not yet have been observed.

task requires simultaneous object modeling and recognition
(SOMAR). The SOMAR problem we formalized in this paper
has the number of states proportional to the number of aspects
the robot has observed. Unlike most POMDP problems, the
number of states increases as more measurement data is
gathered in the SOMAR problem; therefore estimating the
optimal value function for all current belief intervals does not
solve the problem. In our work, a greedy planner is introduced
that leads to the lowest expected entropy based on the current
belief.

Some recent work [12] [10] [9] in computing optimal so-
lutions for the POMDP problem have focused on solving this
problem in Gaussian belief spaces where beliefs are modeled
as Gaussian distributions. However, Gaussian distributions are
not suitable for modeling beliefs in the SOMAR problem
where states are defined as aspects of multiple objects. In [13]
a sample-based approach to belief space planning is introduced
to handle non-Gaussian belief state. In our work, the non-
Gaussian beliefs for all states are propagated through a history
of observation. The belief update is simplified by using one



collection state that represents all unknown states for each
object model.

One of the difficulties in belief space planning is to estimate
future observations. In [12], future observation is modeled
based on Gaussian distribution and under the assumption that
the maximum likelihood observation is always obtained. In our
work, the probability of observing a measurement data among
a subset of possible future observations is estimated based on
past observations stored in object models. The estimation gets
more accurate as more information is memorized in object
models.

In [1], psychologist J.J. Gibson introduced the term affor-
dance as the properties the environment affords the animal;
affordance can be used to explain how “value” or “meaning”
of things in the environment is being perceived. Our action-
based models are based on this interactionist view of percep-
tion and action that focus on learning relationships between
objects and actions specific to the robot. An approach to bind
affordances of objects with the robot was also introduced by
Stoytchev [18]. In his work, the robot learns sequences of
actions that will lead to invariant features on objects through
random exploration. Learned behavior sequences and invariant
features are then stored in the Affordance Table. In our work,
we use a graph representation that memorizes all perception
feedbacks caused by actions instead. Our approach learns a
model that is not restricted to finding invariants, and has the
capability of performing belief space planning.

A model similar to the action-based model employed in this
work was first introduced in Sen’s work [15]. In this paper,
we introduce a mechanism for learning these models without
supervision and a method for applying belief space planning
on these models. In our previous work [14], a planner that
executes actions based on mutual information is proposed.
In this paper, we modified this planner to handle incomplete
models and conducted an experiment to compare different
planning algorithms.

III. MODEL LEARNING

A. Aspect Transition Graph

Aspect Graphs were first introduced to represent
shape [7] [2] in the field of computer vision. An Aspect
Graph contains distinctive views of an object captured from a
viewing sphere centered on the object. The Aspect Transition
Graph (ATG) introduced in this paper is an extension of this
concept. In addition to distinctive views, the object model
summarizes how actions change viewpoints or the state of
the object and thus, the observation. This limits the model
to a specific robot, but allows the model to present object
properties other than viewpoint changes. Extensions to tactile,
auditory and other sensors also become possible with this
representation.

An object in our framework is represented using a directed
graph G = (X ,U), composed of a set of aspect nodes X
connected by a set of action edges U that capture the proba-
bilistic transition between the aspect nodes. Each aspect x ∈ X
represents the properties of an object that are measurable given

TABLE I
NOTATION

Notation Definition

xt the aspect at time t

zt the measurement data at time t

at the control data at time t

bel(xt) p(xt|z1:t, a1:t)
bel(xt) p(xt|z1:t−1, a1:t)

M the current robot memory

Gi an ATG in memory, Gi ∈M
|Gi| the number of total aspects in an ATG Gi

Oi the object given to the robot at the ith trial

oj the object labeled id j

O the set of objects in the world, ∀j oj ∈ O
|O| the total number of objects in the world

ST the set of objects given to the robot up to the T th trial,
Oi ∈ ST i = 1 . . . T

Xj the set of robot states that represents oj

Uj the set of action edges in oj

|F | the number of possible features

a set of sensor parameters. The ATG summarizes empirical
observations of aspect transitions in the course of interaction.

The robot memory M is defined as a set of ATGs that the
robot created through past interactions. Each ATG in the robot
memory represents a single object presented to the robot in
the past.

B. Incomplete Models

The ATG of an object is complete if it contains all possible
aspect nodes and node transitions. However, in practice, when
ATGs are learned through exploration they are almost always
incomplete. In addition, an object might be represented by
multiple (incomplete) ATGs. A complete model is more in-
formative but harder to learn autonomously. In this paper, we
will focus on handling incomplete object models. Figure 1
shows an example of an incomplete ATG of a cube object.

Assuming that an object has a total of |G| aspects, if the
robot has already observed |X | aspects on this object, a naive
way to build an incomplete object model is to add |G| − |X |
unknown aspects to the model and connect them with possible
action edges. To make the calculation more efficient, each of
our ATG models have a single collection node representing
all unobserved aspects. The belief of a collection node is
defined as the probability that the robot is currently viewing
an unobserved aspect of the object this ATG model represents.
By specifying the transition probability between an observed
and unobserved aspect, the belief of each state can be updated
using the Bayes Filter Algorithm (Figure 2).

C. Conditional Update

For each ATG in the robot memoryM we do a conditional
update after observing each new measurement zt. If the new
observation tuple (zt−1, at−1, zt) cannot be generated by the
current ATG, we augment the ATG to keep track of what the



1: procedure BAYES FILTER(bel(xt−1), at, zt)
2: for all xt do
3: bel(xt) =

∑
xt−1

p(xt|at, xt−1) · bel(xt−1)

4: bel(xt) = p(zt|xt) · bel(xt)
5: end for
6: normalize(bel(xt))
7: end procedure

Fig. 2. Bayes Filter Algorithm

ATG would be if it matches the observation. If a new aspect
node is created during the conditional update to match the
new observation, the belief associated with the collection node
representing all unobserved aspects that will be transitioned
to this newly created node. If a new observation tuple is in
conflict with existing nodes or edges in the ATG, the new
observation is discarded and the belief of the collection node
is reset to zero.

Ideally, if we have high certainty that the given object is
identical to the object an ATG in M represents, saving the
augmented ATG representing this object might be beneficial.
However, it is unlikely that we can be 100% sure that the
two objects are identical with a finite number of observations.
For the purpose of this paper, we simplify the problem by not
saving the augmented nodes and edges to avoid a false match
that might contaminate the robot memory.

D. Identify Novel Objects and Recognize Memorized Objects

An ATG is added to the robot memory M only if the
presented object is judged to be novel. A novel object is
defined as an object that has not been presented to the robot in
the past. Although the robot might not have seen all the objects
or all the aspects of each object, to simplify this problem we
make this very limiting assumption that the robot knows that
|O| objects exist in the environment and each object has |G|
aspects. If the robot assumes that there are more objects in the
environment or more aspects of an object then there actually
are, it will bias the judgment toward novelty.

Let ST−1 denote the set of objects that have been presented
to the robot in the first T − 1 trials. Given a sequence of
observations z1:t and actions a1:t during trial T , the probability
that the object presented during trial T , OT , is novel can be
calculated;

p(OT /∈ ST−1|z1:t, a1:t,M)

=
∑

oi /∈ST−1

p(OT = oi|z1:t, a1:t,M)

=
∑

oi /∈ST−1

∑
xt∈Xi

p(xt|z1:t, a1:t). (1)

Where oi is an element of set O designating all of the
objects in the environment. Element xt of set Xi describes all
the aspects comprising object oi. The conditional probability
p(xt|z1:t, a1:t) of observing an aspect is inferred using a

Bayes filter. Object OT is classified as novel if p(OT /∈
ST−1|z1:t, a1:t,M) > 0.5.

If a particular object is judged to be a previously observed
object, we associate it with the ATG that is most likely to gen-
erate the same set of observations. The posterior probability of
object oi is calculated by summing the conditional probability
of observing aspect xt over all aspects comprising object oi,

p(OT = oi|z1:t, a1:t,M) =
∑

xt∈Xi

p(xt|z1:t, a1:t). (2)

E. Bayes Filter Algorithm

The posterior probability of an aspect is calculated after
each measurement and control update using the Bayes Filter
Algorithm [19]. The algorithm is stated in Figure 2, where
bel is the posterior probability p(xt|z1:t−1, a1:t) after exe-
cuting a new action at and bel is the posterior probability
p(xt|z1:t, a1:t) after observing a new measurement zt. Line 3
is the control update step and line 4 is the measurement update
step.

The initial belief over aspects is determined based on the
number of aspect nodes and ATGs in the memory. Assuming
that there are |M| ATGs in the memory and |Xi| aspect nodes
are observed in Gi, the initial belief is given by

bel(x0) =
1

|Gi| · |M|
(3)

bel(xu
0 ) =

|Gi| − |Xi|
|Gi| · |M|

, xu
0 ∈ Gi, (4)

where xu is the collection node representing all unobserved
aspects in Gi and |Gi| is the number of total aspects in Gi.
In this paper we assume all ATGs have the same |Gi|.

We assume that transitions between aspects are determinis-
tic; given the current aspect, the same action always leads
to the same next aspect. Therefore, each aspect only has
one outward action edge of the same type. The transition
probability p(xt|at, xt−1) in the control update step for each
aspect can be calculated by counting how many possible aspect
nodes (including the collection nodes) the current aspect can
transition to.

To simplify the problem, we also assume that there is no
noise in the measurement data. Therefore, the observation
probability p(zt|xt) would be either 1 for a match or 0 for
a mismatch. Note that, although there is no uncertainty in the
measurement data, we still have uncertainty over aspects since
different objects could generate the same observation zt.

IV. TASK-LEVEL PLANNING

A. Minimizing Uncertainty

The challenge of integrating task-level planners with noisy
and incomplete models requires that we confront the partial
observability of the state while building plans. Since the
true state of the system cannot be observed, it must be
inferred from the history of observations and actions. Our
planner belongs to a set of approaches (for example [12]) that



select actions to reduce the uncertainty of the state estimate
maximally with respect to the task.

Object recognition can be viewed as one such task in which
the uncertainty over object identities (as quantified by the
object entropy) is reduced with each observation. Selecting
the action at that minimizes the expected entropy of the
distribution over elements of set OT representing the object
identity reduces the uncertainty over object identities the most
after the next observation zt+1;

argmin
at

E(H(OT |zt+1, at, z1:t, a1:t−1))

= argmin
at

∑
zt+1

H(OT |zt+1, at, z1:t, a1:t−1)×

p(zt+1|at, z1:t, a1:t−1). (5)

Where H is the entropy associated with the random variable.
The entropy is zero if the state is uniquely determined; it
reaches its maximum if all states are equally likely;

H(OT |zt+1, at, z1:t, a1:t−1)

=
∑
oi∈O

p(oi|z1:t+1, a1:t) log p(oi|z1:t+1, a1:t). (6)

The posterior probability p(oi|z1:t+1, a1:t) can be calculated
by updating the existing belief using the Bayes Filter Algo-
rithm. The prior probability p(zt+1|at, z1:t, a1:t−1) of observ-
ing zt+1 given past observations can be calculated by summing
the probability of all aspects generating observation zt+1,

p(zt+1|at, z1:t, a1:t−1)

=
∑
oi∈O

∑
xt+1∈Xi

p(xt+1|at, z1:t, a1:t−1) · p(zt+1|xt+1). (7)

Where the posterior probability of an aspect
p(xt+1|at, z1:t, a1:t−1) is updated using the Bayes Filter
Algorithm.

B. Approximation

The runtime for calculating the expected entropy given an
action is O(|F | · |O|2 · |X |). To speed up the calculation,
an approximate expected entropy for each action is calculated
instead:

E(H(OT |zt+1, at, z1:t, a1:t−1))

'
∑
zt+1

H(OT |zt+1, at, z1:t, a1:t−1) · p(zt+1|at, z1:t, a1:t−1)×

1(threshold,∞)(p(zt+1|at, z1:t, a1:t−1)). (8)

Here 1(·) is the indicator function and the threshold is set to
1/|F | in this experiment. The value of the indicator function
is 1 if the input is greater than threshold and 0 otherwise.

If an observation zt+1 is unlikely to be observed, the
entropy H(OT |zt+1, at, z1:t, a1:t−1) will not be calculated.

Fig. 3. The simulated Robonaut 2 interacting with a box.

The approximate expected entropy will be lower than the
actual entropy, however it effects all estimates in the same
way and should allow us to identify the action that leads to
the minimum entropy most of the time.

V. EXPERIMENTS

A. Environment

We evaluated the capabilities of the proposed model and
planner using the Robonaut 2 simulator (Figure 3) and an
exclusively kinematic simulator. The kinematic simulator runs
much faster and is used to collect more data for comparing
different planners. The simulation environment contains 100
unique objects called ARcubes that consist of a 28cm cube
with unique combinations of ARtags on the six faces; 12
different ARtag patterns are used in this experiment. In an
ATG for an ARcube, an aspect consists of ARtag features
observed on the top face and the front face. As in Figure 1
each ATG has 24 unique aspects and each aspect has 132
different pattern combinations. For the sake of simplicity, we
assume that an object does not have two faces with the same
ARtag.

In the Robonaut 2 simulator, the simulated Asus Xtion
sensor located in Robonaut 2’s head is used for visual and
depth input. The ARtags located on the ARcubes are detected
and recognized using the ARToolkit [6] and are classified as
the top or front ARtag based on the 3 dimension position. To
simplify the experiment, we are not distinguishing different
orientations of the ARtag.

The robot can perform 3 different manipulation actions on
the object: 1) flip the top face of the cube to the front, 2) rotate
the left face of the cube to the front, and 3) rotate the right
face of the cube to the front. The robot will be able to execute
any of these actions under the condition that it observes both
of the ARtags. If the ARcube is tilted, too far or too close to
manipulate, the robot will try to adjust the cube till it is in the
right position. These adjustment actions are not stored in the
ATGs.



TABLE II
THE SUCCESS RATE OF AN INFORMATION THEORETIC PLANNER IN

RECOGNIZING THE OBJECT (10 ACTIONS PER TRIAL)

Test Correct Identification Correct Recognition Success Rate
1 80/100 20/21 79%
2 79/100 25/27 77%
3 87/100 21/25 83%
4 78/100 26/28 76%
5 84/100 24/27 81%

average 81.6% 90.7% 79.2%

B. Simultaneous Object Modeling and Recognition

To address the dual problem of modeling and reasoning, we
formalize the problem of achieving this as simultaneous object
modeling and recognition (SOMAR). The goal of SOMAR is
to have the robot build up a set of object models through
interacting with random objects one at a time. The task
is evaluated based on whether the robot can identify novel
objects and recognize which object model it corresponds to if
it have been observed in the past.

This problem is inspired by the simultaneous localization
and mapping (SLAM) problem introduced in [8]. Instead of
building a map while localizing the robot, our task requires
performing object modeling and recognition at the same time.
The SOMAR problem is equivalent to a modified SLAM
problem where multiple incomplete maps are given to the
robot where the goal is to locate the robot in one of the maps
or identify that the robot is in none of these maps and start
modeling the current environment.

C. Result

Tables II and III show the result of using the planner to
recognize the object presented. Each test involves 100 trials
and starts with an empty robot memory M. In each trial,
the task is to decide which ATG in memory the given object
corresponds to or to declare it as a novel object. For each trial,
an object is chosen at random and presented to the robot. The
robot observes the object and executes an action. This process
is repeated 10 times in the first experiment and 20 times in
the second experiment. At the end of each trial the robot
determines the likelihood that the presented object is novel
and the most likely existing object in memory is identified.

The last row in Table II and Table III presents the results
averaged over all the tests. The success rate is the percentage
of objects correctly classified, that is, correctly identified in
memory or declared as a novel object. When 10 actions
are performed per trial, the system correctly recognizes the
object 90.7% of the time, and correctly determines if the
presented object is novel or not 81.6% of the time. The overall
success rate is 79.2% in this experiment. When 20 actions are
performed per trial, the overall success rate reaches 98.8%.

We also tested the efficiency of the planner against a
random policy. The number of actions executed per trial were
varied from 4 to 20. Figure 4 shows how the success rate
of a test varies with the number of actions executed per
trial. As is evident from the plots, the information theoretic

TABLE III
THE SUCCESS RATE OF AN INFORMATION THEORETIC PLANNER IN

RECOGNIZING THE OBJECT (20 ACTIONS PER TRIAL)

Test Correct Identification Correct Recognition Success Rate
1 100/100 34/34 100%
2 98/100 32/32 98%
3 98/100 40/40 98%
4 99/100 37/37 99%
5 99/100 32/32 99%

average 98.8% 100% 98.8%

Fig. 4. The plot shows the average success rate of 10 tests as the number of
actions per trial are increased. Selecting actions that minimize entropy leads
to a higher success rate then selecting actions at random.

planner outperforms a random exploration policy for all cases
except when the number of actions per trial is low. Both
algorithms perform equally poor when not enough information
is provided.

VI. CONCLUSION

This paper describes an incremental learning framework
for building a memory of objects through interaction. We
presented a Bayes framework that performs inference over
incomplete object models. We then showed the strengths of
combining this representation with a belief-space planner.
This information theoretic planner is then compared with a
random exploration policy based on a problem we formalized
as simultaneous object modeling and recognition. We showed
that the belief-space planner leads to a higher success rate then
selecting actions at random.

For future work, we are planning to test our algorithm on
a greater number of objects with more realistic features and
are interested in studying when to merge incomplete object
models from different trials. We are also exploring how to
represent interactions between multiple objects in the scene
and extensions of the idea that can incorporate multi-modal
sensory features like tactile data and temporally extended
actions.
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