An Evaluation of Particle Filters for Contact-SLAM Problems

Shuai Li¹, Siwei Lyu², Jeff Trinkle¹, and Wolfram Burgard³

¹ Department of Computer Science, Rensselaer Polytechnic Institute

²Department of Computer Science, University at Albany, SUNY

³Department of Computer Science, University of Freiburg

Contact-SLAM Problem

- Design filter to track:
 - Object Pose
 - Contact Locations
 - Physical Parameters, such as coefficient of friction.
- Research goal:
 - To understand the design trade-offs of particle filter.

Evaluation of Particle Filters for Contact-SLAM

 We studied the case of a robot making contact with an object with its end-effector.

- Four models were studied:
 - (a) two contact models: Rigid and Compliant
 - (b) two noise models: Noise added to input and output
- Different methods of filtering were tested.

Results

We tested all our methods in both simulation experiments and physical experiments.

Result Conclusions:

- Different noise models with proper choice of noise levels perform similarly on tracking.
- Adding noise to the input performs the best for contact prediction.
- Rigid body and compliant body models show no big differences for contact perdition in physical experiments while compliant body model is a better option for contact prediction in simulation experiments.