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Abstract—Grasping and manipulating a previously unknown
object without assumptions about structure or relevant features
in the environment is an especially challenging problem in
robotics. Motivated by recent work on feature learning with
deep neural networks, we approach this problem by learning
a dynamical system that relates robotic control inputs (e.g.,
motor torques) to features learned from raw sensory data (e.g.,
images) using a deep neural network. We present an algorithm
for inferring the most likely parameters of this system using
approximate expectation maximization. Initial experiments show
that the method is able to predict the next image of a pendulum
in a 2D simulator to less than 1 pixel of mean squared error using
only the current image and the control inputs to the system.

I. INTRODUCTION

A fundamental challenge in robotics is to plan for grasp-
ing or manipulation tasks without a known model for the
object of interest. For example, a robot in the home might
have to manipulate objects with unknown mass distributions,
coefficients of friction, or moments of inertia while dealing
with occlusions. One approach to achieving this is to learn
a dynamics model that relates the current robotic controls
applied to the unknown object (e.g., motor torques) and current
sensor data (e.g., images) to expected future sensor data. This
predictive model could be used to build a controller directly
around sensor data for a manipulation or grasping task.

For many robots the primary sensing modality is images,
either acquired with color cameras or depth sensors like the
Kinect. However, planning directly with images is challenging
due to their high dimensionality and highly non-linear rela-
tionship with the physical state (e.g., position, orientation) of
the system being imaged. This raises the problem of how to
best extract a lower dimensional representation from images
that is relevant to the planning task at hand. Visual servoing
approaches address this problem by using hand-tuned features,
such as SIFT or HOG, to identify key points on the object
of interest and use these features to infer the pose of the
object, along with a camera model an approximate geometry of
the object; see [3] for an overview. However, due to the use
of hand-tuned features, learning the dynamics of previously
unmodeled objects can be difficult.

In this work, we discuss an algorithm for learning the
dynamics of an object directly in image space from only
applied controls and their corresponding image observations.
Motivated by recent successes in using deep neural networks
to learn feature representations from images [9], we model the
problem as that of learning dynamics in the space of features

generated by a neural network. We learn the maximum-
likelihood parameters of both the dynamics and the neural
network using expectation maximization. Our approach is
similar to the works of Ghahramani et al. [6] or Briegel et
al. [2], but using a deep neural network as an observation
function.

The problem of learning dynamics models for robotic
control has been well studied [12], but the majority of past
work has not addressed how to jointly learn this model
and extract relevant information from images. Siddiqi et al.
addressed this by learning a linear dynamical model for the
top 10 principal components of stereo image and laser range
data on a Botrics O-bot [13]. Boots et. al used kernel-based
Predictive State Represenations to learn a predictive model of
depth images from motor commands and their corresponding
observations [1]. Deep neural networks (DNNs) have been
used successfully for learning relevant features from images
in a variety of applications, including image classification,
reinforcement learning, and modeling time series [9, 10, 7, 14].
DNNs have also been used to learn dynamical models of
speech features over a discrete state space [4]. In contrast,
our work deals with image data and continuous hidden state
spaces.

II. METHOD

We consider the following dynamics model:

xt+1 = Axt +But +wt wt ∼ N(0, σ2
1I)

yt = h(xt) + vt vt ∼ N(0, σ2
2I)

where xt ∈ Rm is the hidden state of the system, ut ∈ Rp is
the applied controls, such as forces and torques on the object,
and yt ∈ Rn is the vectorized image observation. The matrices
A ∈ Rm×m and B ∈ Rm×p correspond to the linear dynam-
ical system, and wt ∈ Rm and vt ∈ Rn are the dynamics
and observation noises, repectively. The nonlinear function
h : Rm → Rn, which we will refer to as a ‘decoder’, is a deep
neural network acting as a non-linear observation function.
The network is parameterized by the layerwise weights and
biases θh = {W (h)

i , b
(h)
i } [11]. The full parameters of this

model are denoted θ = {A,B, c, σ1, σ2, θh}. We treat the
observations yt and controls ut as inputs from a training
sequence.

Subsituting the transition and observation distributions from
our model into the standard LDS equations [5] and taking the
logarithm we obtain the complete log-likelihood:
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Fig. 1. Comparison of predicted observations using our trained model (top) versus ground truth observations (bottom) for a sequence of 10 test images of
a pendulum. The model was trained for 1,000 iterations of EM. The predictions are close to the ground truth values for several timesteps, while predictions
are blurred in later timesteps due to uncertainty

lc(θ) = log(p(x0)) +

T−1∑
t=0

log(p(xt+1|xt,ut))+

T∑
t=1

log(p(yt|xt))

which we then maximize using approximate expectation max-
imization, described below.

A. E-Step

A common method for performing the expectation step
for a linear dynamical system is to perform Rauch-Tung-
Striebel (RTS) smoothing over the hidden variables [5]. With a
nonlinear observations function, the expectation of the hidden
state xt given an observation yt cannot be computed exactly.
Thus, we use linearize the observation function at each time
step in an extended Kalman filter (EKF), computing the
Jacobian at each state by running backpropagation through
the decoding network for each dimension of the output h(x)i.
This results in a Gaussian distribution over hidden states
P (xt+1|y0,y1, ...,yT ).

B. M-Step

In our maximization step, we find the approximate
maximum-likelihood estimates of the parameters θ given the
distribution on hidden states from the EKF. The LDS model
decouples the maximization of the noise parameters, linear
dynamics parameters, and the observation parameters. The
linear dynamics parameters are estimated using weighted least
squares with weights given by the smoothed variance estimates
[5]. See [13] for how to derive the updated dynamics and
observation noise. We cannot maximize the parameters of the
decoding function h(x) in closed form because the distribution
of the neural network outputs is no longer Gaussian. Therefore
we approximate the integral over hidden states in the log-
likelihood using Monte-Carlo integration, generating samples
from the state distributions given by Kalman smoothing. We
then maximize the likelihood function with respect to the
decoder weights over these samples using backpropagation,
initializing the parameters θh with the parameters from the
previous iteration.

III. EXPERIMENTS

In our preliminary experiments, we simulated a pendulum
moving about a fixed point under gravitational forces. The
pendulum was actuated by forces applied to the free end of the
pendulum, there were gravitational forces but no friction, and
the center of mass was located in the center of the pendulum.
Note that the dynamics of this system are non-linear with
respect to the angle of the pendulum. We randomly applied
forces and collected 9,000 grayscale training images and 1,000
grayscale test images along with the direction and magnitude
of the applied forces and velocities at each timestep.

Our encoding and decoding neural networks each consisted
of 2 hidden layers of sizes 100 and 10, with a sigmoidal
non-linearity at each hidden layer. The neural network was
sparsely initialized with random weights chosen from a zero-
mean Gaussian distribution, and we optimized its parameters
for each M-step using the Caffe library [8].

After 1,000 iterations of EM, our model was able to predict
the next image of the pendulum given the current image and
controls with a mean squared error of 1.22 pixels on the
training set and 0.86 pixels on the test set. Training took ap-
proximately 14 seconds per E-step and 10 seconds per M-step.
We compare a test 10-image sequence of the mean images
predicted using our model given an initial image and planned
controls with the ground truth images in Fig. 1. We see that
for the first few timesteps the images are predicted accurately,
and later images are blurred around the true location of the
pendulum, reflecting the gaussian uncertainty in the hidden
state estimate.

IV. CONCLUSION

We presented an EM-inspired algorithm for learning dy-
namics directly from raw images using a deep neural network
observation function. Initial experiments demonstrate that our
method is able to predict images of a pendulum in a 2D
simulator for several time steps, suggesting that it could be
used to build a controller around a plan specified directly in
image space.

This is a first step towards predicting observation data using
deep neural networks, but questions remain with respect to
using this method for planning and manipulation in an actual
robot workspace. First, it remains to be seen whether this
method would extend to natural images or to depth data.



Given past success in reconstructing natural images using deep
autoencoders, we believe that this would be possible given
enough data and a well-chosen network architecture. Second,
future work will need to validate that this methodology is use-
ful for planning and manipulation. We will run experiments to
control systems from images using model-based reinforcement
learning techniques and to plan controllers around trajectories
that were demonstrated to the robot in image space. Third,
for a specific planning or manipulation task involving non-
linear dynamics, a model of the dynamics needs to only be
accurate in the task-relevant part of state space to achieve
success. We will research combining our method with guided
exploration to choose training trajectories that are relevant to
a specific task at hand. Fourth, it is not clear how well our
method works on systems with discontinuous dynamics, as is
common in systems with collisions. We will run experiments
with discontinuities such as collisions with walls or other
objects, and we will also compare this with using mixtures
of linear functions or non-linear functions in the dynamics.
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