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Abstract—Policy search methods can allow robots to automat-
ically learn control policies for a wide range of tasks. However,
practical applications of policy search tend to require the policy
to be supported by hand-engineered components for perception,
state estimation, and low-level control. In this paper, we aim
to answer the following question: does training the perception
and control systems jointly end-to-end provide for better per-
formance than training each component separately? To answer
this question, we develop a method that can be used to train
policies that map raw observations, that consist of joint angles
and image pixels, directly to torques at the robot’s motors. The
policies are represented by deep convolutional neural networks
(CNNs) with 92,000 parameters, and are trained by using guided
policy search, which transforms the policy search task into a
supervised learning problem. We show that this method can learn
manipulation tasks that require close coordination between vision
and control, including inserting a block into a shape sorting cube,
screwing on a bottle cap, fitting the claw of a toy hammer under
a nail with various grasps, and placing a coat hanger on a clothes
rack.

I. INTRODUCTION

Policy search methods can allow robots to autonomously
learn a wide variety of behaviors. However, policies learned
using such methods often rely on hand-engineered components
for perception and low-level control. For example, a policy
for object manipulation might specify motions in task-space,
using hand-designed PD controllers to execute the desired
motion and relying on an existing vision system to localize
objects in the scene [8]. The vision system in particular can be
complex and prone to errors, and its performance is typically
not improved during policy training, nor adapted to the goal
of the task.

We propose a method for learning policies that directly map
camera images and joint angles to motor torques. The policies
are trained end-to-end using real-world experience, optimizing
both the control and vision components on the same measure
of task performance. This allows the policy to learn goal-
driven perception, which avoids the mistakes that are most
costly for task performance. Learning perception and control
in a general and flexible way requires a large, expressive
model. We use convolutional neural networks (CNNs), which
have 92,000 parameters and 7 layers. Deep CNN models have
achieved state of the art results on supervised vision tasks
[3, 9], but sensorimotor deep learning remains a challenging
prospect. The policies are extremely high dimensional, and the
control task is partially observed, since part of the state must
be inferred from images.

To address these challenges, we extend the framework of
guided policy search to sensorimotor deep learning. Guided
policy search decomposes policy search into two phases: a
trajectory optimization phase that determines how to solve the

hammer

hanger

bottle

cube

Fig. 1: Our method learns visuomotor policies that directly
use camera image observations (left) to set motor torques on
a PR2 robot (right).

task in a few specific conditions, and a supervised learning
phase that trains the policy from these successful executions
with supervised learning [6]. Since the CNN policy is trained
with supervised learning, we can use the tools developed in
the deep learning community to make this phase simple and
efficient. We handle the partial observability of visuomotor
control by optimizing the trajectories with full state informa-
tion, while providing only partial observations (consisting of
images and robot configurations) to the policy. The trajectories
are optimized under unknown dynamics, using real-world
experience and minimal prior knowledge.

The main contribution of our work is a method for end-
to-end training of deep visuomotor policies for robotic ma-
nipulation. This includes a partially observed guided policy
search algorithm that can train high-dimensional policies for
tasks where part of the state must be determined from camera
images, as well as a novel CNN architecture designed for
robotic control, shown in Figure 1. Our results demonstrate
improvements in consistency and generalization from training
visuomotor policies end-to-end, when compared to the more
standard approach of training the vision and control compo-
nents separately. A complete description of our work can be
found in our recent technical report [5], and videos of the
learned policies can be found on the project website1.

II. VISUOMOTOR POLICY ARCHITECTURE

The aim of our method is to learn a policy πθ(ut|ot)
that specifies a distribution over actions ut conditioned on
the observation ot, which includes a camera image and the
configuration of the robot, which consists of the joint angles,

1The video can be viewed at http://sites.google.com/site/visuomotorpolicy

http://sites.google.com/site/visuomotorpolicy
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Fig. 2: Visuomotor policy architecture. The network contains three convolutional layers, followed by a spatial softmax and an
expected position layer that converts pixel-wise features to feature points, which are better suited for spatial computations. The
points are concatenated with the robot configuration, then passed through three fully connected layers to produce the torques.

end-effector position, and their velocities. Our policies run on
a PR2 robot at 20 Hz. The policy parameters θ are optimized to
minimize a cost function `(xt,ut) over the course of a fixed-
length episode. The actions ut are the motor torques, and the
state xt includes the known robot configuration, as well as
(for example) the target position for an object placement task.
The latter information is not observed directly by the policy,
and must be inferred from the camera image. We represent
πθ(ut|ot) as a Gaussian, with the mean given by a nonlinear
function approximator. Since this function approximator needs
to operate directly on raw images, we use convolutional
neural networks (CNNs). The architecture of our CNN is
shown in Figure 2. This network has 7 layers and around
92,000 parameters, which presents a tremendous challenge for
standard policy search methods [1].

CNNs built for spatial tasks such as human pose estimation
often rely on the availability of location labels in image-space,
such as hand-labeled keypoints [9]. We propose a novel CNN
architecture capable of estimating spatial information from an
image without direct supervision in image space. The core
component of our network architecture, shown in Figure 2
is a spatial feature point transformation that consists of a
softmax followed by an expectation operator. Intuitively, the
role of this transformation is to find the point of maximal
activation in each channel of the last convolutional layer,
creating a kind of soft arg-max. Formally, the activations
in each of the 32 response maps in the last convolutional
layer are passed through a spatial softmax function of the
form scij = eacij/

∑
i′j′ e

aci′j′ . Each output channel of the
softmax is a probability distribution over the location of a
feature in the image. To convert from this distribution to a
coordinate representation, the network calculates the expected
image position of each feature, yielding a 2D coordinate
for each channel. This corresponds to a fully connected
layer with weights corresponding to image-space positions of
each point in the response map. The resulting spatial feature
points are concatenated with the robot’s configuration and fed
through two fully connected layers, each with 40 rectified
units, followed by linear connections to the torques. The full
visuomotor policy contains about 92,000 parameters, of which
86,000 are in the convolutional layers.

The spatial softmax and the expected position computation
serve to convert pixel-wise representations in the convolutional

layers to spatial coordinate representations, which can be
manipulated by the fully connected layers into 3D positions
or motor torques. The softmax also provides lateral inhibition,
which suppresses low, erroneous activations. Our experiments
show that this network can learn useful visual features using
only 3D positional information provided by the robot and
no camera calibration. Furthermore, by training our network
with guided policy search, it can acquire task-specific visual
features that improve policy performance.

III. VISUOMOTOR POLICY TRAINING

The high dimensionality of our CNN policies makes them
extremely difficult to optimize with standard reinforcement
learning methods [1]. Guided policy search [4] transforms
policy search into a supervised learning problem, which can
be used to optimize much higher dimensional policies. The
training set for supervised learning is generated by simple
trajectory-centric algorithms. The trajectory phase produces
Gaussian trajectory distributions pi(τ), which correspond to
a mean trajectory with linear feedback. Each pi(τ) succeeds
from a specific initial state. For example, in the task of placing
a cap on a bottle, these initial states might be different bottle
positions. By training on multiple trajectories for multiple
bottle positions, the final CNN policy can succeed from all
initial states, and can generalize to other states from the same
distribution.
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We present a partially ob-
served guided policy search
method that uses BADMM
to iteratively enforce agree-
ment between the policy
πθ(ut|ot) and the trajec-
tory distributions pi(τ). A
diagram of this method is
shown on the right. In the
outer loop, we draw a sam-
ple for each initial state on
the real system. The samples are used to fit the dynamics
for trajectory optimization, and serve as training data for the
policy. The inner loop alternates between optimizing each
pi(τ) and optimizing the policy. Unlike prior guided policy
search methods, the policy is trained on observations ot,
allowing the method to handle partial observability, while the



trajectories are optimized on the full state xt. For example, if
the unobserved part of xt is the position of a target object,
such as the bottle, we can hold this object in the robot’s left
gripper, while the right arm performs the task. This type of
instrumented training is a natural fit for many robotic tasks,
where training is performed in a controlled environment, but
the final policy must be able to succeed “in the wild.”

IV. EXPERIMENTAL RESULTS

We evaluated our method by training policies on a PR2
robot for hanging a coat hanger on a clothes rack, inserting
a block into a shape sorting cube, fitting the claw of a toy
hammer under a nail with various grasps, and screwing on
a bottle cap. The cost function for these tasks encourages
low distance between three points on the end-effector and
corresponding target points, low torques, and, for the bottle
task, spinning the wrist. The equations for these cost functions
follow prior work [6]. The tasks are illustrated in Figure 1.
Each task involved variation of about 10-20 cm in each
direction in the position of the target object (the rack, shape
sorting cube, nail, and bottle). In addition, the coat hanger
and hammer tasks were trained with two and three grasps,
respectively. All tasks used the same policy architecture.

We evaluated the visuomotor policies in three conditions:
(1) the training target positions and grasps, (2) new target
positions not seen during training and, for the hammer, new
grasps (spatial test), and (3) training positions with visual
distractors (visual test). A selection of these experiments can
be viewed in the videos available online2. For the visual test,
the shape sorting cube was placed on a table, the coat hanger
was placed on a rack with clothes, and the bottle and hammer
tasks were performed in the presence of clutter. Illustrations
of this test are shown in Figure 3.

The success rates for each test are shown in Table I. We
compared to two baselines, both of which train the vision
layers in advance for pose prediction, instead of training the
entire policy end-to-end. The features baseline discards the last
layer of the pose predictor and uses the feature points, resulting
in the same architecture as our policy, while the prediction
baseline feeds the predicted pose into the control layers.

The pose prediction baseline is analogous to a standard
modular approach to policy learning, where the vision system
is first trained to localize the target, and the policy is trained
on top of it. This variant achieves poor performance, because
although the pose is accurate to about 1 cm, this is insufficient
for such precise tasks. As shown in the video, the shape sorting
cube and bottle cap insertions have tolerances of just a few
millimeters. Such accuracy is difficult to achieve even with
calibrated cameras and checkerboards. Indeed, prior work has
reported that the PR2 can maintain a camera to end effector
accuracy of about 2 cm during open loop motion [7]. This
suggests that the failure of this baseline is not atypical, and
that our visuomotor policies are learning visual features and
control strategies that improve the robot’s accuracy.

2The video can be viewed at http://sites.google.com/site/visuomotorpolicy
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Fig. 3: Training and visual test scenes as seen by the policy
at the ends of successful episodes. The hammer and bottle
images were cropped for visualization only.

When provided with pose estimation features, the policy
has more freedom in how it uses the visual information, and
achieves somewhat higher success rates. However, full end-
to-end training performs significantly better, achieving high
accuracy even on the challenging bottle task, and successfully
adapting to the variety of grasps in the hammer task. This
suggests that, although the vision layer pre-training is clearly
beneficial for reducing computation time, it is not sufficient by
itself for discovering good features for visuomotor policies.

coat hanger training (18) spatial test (24) visual test (18)
end-to-end training 100% 100% 100%
pose features 88.9% 87.5% 83.3%
pose prediction 55.6% 58.3% 66.7%
shape sorting cube training (27) spatial test (36) visual test (40)
end-to-end training 96.3% 91.7% 87.5%
pose features 70.4% 83.3% 40%
pose prediction 0% 0% n/a
toy claw hammer training (45) spatial test (60) visual test (60)
end-to-end training 91.1% 86.7% 78.3%
pose features 62.2% 75.0% 53.3%
pose prediction 8.9% 18.3% n/a
bottle cap training (27) spatial test (12) visual test (40)
end-to-end training 88.9% 83.3% 62.5%
pose features 55.6% 58.3% 27.5%

TABLE I: Success rates on training positions, on novel test
positions, and in the presence of visual distractors. The number
of trials per test is shown in parentheses.

The policies exhibit moderate tolerance to distractors that
are visually separated from the target object. However, as
expected, they tend to perform poorly under drastic changes to
the backdrop, or when the distractors are adjacent to or occlud-
ing the manipulated objects, as shown in the videos available
online. In future work, this could be mitigated by varying the
scene at training time, or by artificially augmenting the image
samples in the training set with synthetic transformations.

V. DISCUSSION AND FUTURE WORK

We presented a method for learning robotic control policies
that use raw camera input. The policies are represented by
a novel convolutional neural network architecture, and can
be trained end-to-end using our partially observed guided

http://sites.google.com/site/visuomotorpolicy


policy search algorithm, which decomposes the policy search
problem in a trajectory optimization phase that uses full state
information and a supervised learning phase that only uses
the camera observations. This decomposition allows us to
leverage state-of-the-art tools from supervised learning and
optimize high-dimensional CNN policies. Our experimental
results show that end-to-end training produces significant
improvements in policy performance compared to using fixed
vision layers trained for pose prediction on a real robotic
manipulator.

Although we demonstrate moderate generalization over
variations in the scene, our current method does not general-
ize to dramatically different settings, especially when visual
distractors occlude the manipulated object. The success of
CNNs on exceedingly challenging vision tasks suggests that
this class of models is capable of learning invariance to
irrelevant distractor features [2, 3, 9], and in principle this
issue can be addressed by training the policy in a variety
of environments, though this poses certain logistical chal-
lenges. More practical alternatives that could be explored in
future work include simultaneously training the policy on
multiple robots in a different environment, developing more
sophisticated regularization and pre-training, and introducing
synthetic data augmentation. However, even without these
improvements, our method has numerous applications in, for
example, industrial settings where the robot must repeatedly
and efficiently perform a task that requires visual feedback
under moderate variation in background and clutter conditions.

In future work, we hope to explore recurrent policies that
can deal with extensive occlusions by keeping a memory of
past observations. We also hope to extend our method to a
variety of other rich sensory modalities, including haptic input
from pressure sensors and auditory input. We expect that end-
to-end training will become increasingly important with more
varied sensory modalities, where it is much less apparent how
to manually engineer the appropriate perception modules.
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