
Acquiring Object Experiences at Scale
John Oberlin and Maria Meier and Tim Kraska and Stefanie Tellex

Computer Science Department
Brown University

Abstract—The aim of this project is to improve the perfor-
mance of automatic object detection, tracking and manipulation
by using robots to collect a corpus of perceptual data for one
million real-world objects. Robots lack the ability to robustly
identify, localize, and manipulate the objects in our daily lives.
The field of object detection and recognition is driven by
annotated corpora [21, 8, 15, 26] which researchers use to train
and test models [13, 10]. These corpora consist of photos taken
by a human photographer and may contain many examples of
objects, but typically only a single view of each individual object.
Existing corpora of object instances contain many fewer examples
(on the order of hundreds) and no experience interacting with
the object [14, 23]. Our proposed approach, in contrast, uses an
industrial robot (Baxter) to automatically collect a database of
object models, including RGB images from multiple views, point
clouds, and physical experiences gathered as the robot interacts
with each object. Using our proposed approach, anyone with
access to a Baxter robot can scan an object, acquiring a model
of that object for their immediate use and also adding that model
to the database. If we had all 300 research Baxters scanning and
interacting with objects using our existing software stack, we
could reach our goal of one million objects in eleven days. We are
soliciting participation for our scanning project to revolutionize
robotic manipulation by providing access to object experiences
at a very large scale.

I. INTRODUCTION

Robust object manipulation is essential for human-robot
collaboration, because a robot needs to be able to manipulate
a diverse array of objects to assist with a wide variety of tasks,
such as helping a chef in a kitchen by delivering a spatula, a
patient in a hospital by pouring them a glass of water, or a
worker in a factory by handing them a screwdriver. Variations
in the amount of clutter, lighting conditions, and properties of
domain specific objects make it difficult to create a general-
purpose system for manipulating diverse objects in real-world
environments. State of the art computer vision approaches such
as deep learning may begin to address these challenges, but re-
quire massive amounts of data which are usually not provided
in a way that promotes joint learning of grasps [21, 8, 15].
Existing datasets of many objects usually contain only a few
views of each object, and detailed datasets generally only
contain examples for a few objects [14, 23]. Furthermore they
lack information that will lead to the discovery of object
affordances, such as unscrewing a bottlecap, or opening a
book.

A two-year old human child is an effective mobile-
manipulator because of hours of practice spent playing with
countless objects [9]. To enable a robot to benefit from a
similarly-sized dataset, we aim to collect a very large corpus of
one million real-world object memories, containing informa-

Fig. 1. We aim to automate the collection of large datasets of object
manipulation results by distributing the load across many Baxter research
robots.

tion gathered both passively, such as RGB images and point
clouds, as well as actively, such as memories about which
grasps succeeded well enough to transport an object. To collect
this corpus, we will use the Baxter robot, which consists of
two seven-degree of freedom arms equipped with a monocular
camera and IR range sensor in each hand. By exploiting
Baxter’s ability to move the camera and manipulate objects,
the robot can collect data both passively, by imaging the object,
and actively, by interacting with it in the environment. Baxter
provides a unique advantage and opportunity for this project
because there are around 300 research Baxters in the robotics
labs of today. Our scanning framework can acquire an object in
about 20 minutes using an unmodified Baxter robot that does
not need to be augmented with any additional sensing. Using
this framework, we could scan one million objects using this
method in eleven days, if we had access to all 300 existing
research Baxters.

This paper outlines our approach to acquiring object ex-
periences on a very large scale. We describe our software
framework for collecting data about objects both passively and
actively using Baxter, described in more detail in our previous
paper [18], adding an analysis of timing information and
describing issues faced when scanning novel objects. Scenes
from the data collection process appear in Figure 1, and a
video is available at [1]. Next we discuss our plans to scale up
data collection by creating a distributed database architecture
for scanning objects and sharing data and present approaches
for using this data to revolutionize robotic object recognition
and manipulation by leveraging the information contained in
this very large dataset.



II. ACQUIRING OBJECT APPEARANCE DATA

We take an instance-based approach to object manipulation,
training a model specific to that object so that we can detect,
localize and grasp the object, in contrast to category-based ap-
proaches [22, 19]. Instance-based approaches do not generalize
to novel objects, but work reliably with sufficient data. Our
approach works by using the robot to automatically collect this
data, scanning the object to build an instance-based detector
specific to that object and proposing grasps using geometric
information from the point cloud.

A. Object Detection

To detect a target object, the robot collects a dataset of
image crops by moving its end effector around the target, takes
images of the object, and then extracts a bounding box of the
target from each image. A modified Canny edge detector [7]
provides bounding boxes for objects in view, which allows
us to perform coarse grained visual servoing on previously
unencountered objects. To automatically extract clean bound-
ing boxes, we use a structured environment consisting of a
tabletop around the robot. The surface of the table is allowed
to have some visual texture but should be perpendicular to
the robot’s z-axis. Reducing the dimensionality of the pose
estimation subproblem, the robot keeps the camera pointed
straight down at the table in what we call a crane pose, but the
orientation within that plane changes during visual servoing in
order to move into the correct frame.

To detect objects using this data, the robot uses a standard
SIFT [16], bag of words (BoW) [24], and k-nearest neighbors
(kNN) [4] pipeline. We extract SIFT features densely from
image crops, cluster features from all object classes once at
train time to form a visual vocabulary for the BoW model,
then create a histogram BoW feature for each example at train
time to build the kNN model and also at inference time to
query against the kNN model. We employ machine learning
techniques of relatively low power, which were considered
state-of-the-art nearly a decade ago; they are effective because
the robot can move the camera about the object to obtain a
very clean image crop.

B. Pose Estimation

To localize the object, the robot obtains registered crops of
a constant size at known heights, which it uses to perform fine
grained visual servoing on the object. Fine grained servoing
allows us to move the arm back the origin of the local coordi-
nate frame of the object at the original registered orientation.

We perform object registration through visual servoing, for
which we require constant size W × H crops {Ai} of the
object centered beneath the camera at known heights. At servo
time, we extract a much larger crop C from the camera
image and perform the modified Canny edge detection on
it. Next we examine all of the W × H patches of C and
for each patch Px,y , subtract its mean and L2 normalize it
to yield P̂x,y , having performed the same procedure once
to the registration crops {Ai} to obtain {Âi}. Selecting the
normalized registration crop Âh from the appropriate height

h, we apply Âh and a fixed subset {Âh,θ} of its rotations to the
normalized crops P̂x,y and select the (x, y, θ) with maximal
inner product 〈Âh,θ, P̂x,y〉. This triple describes the movement
necessary to take us to the local frame of the object. This
procedure localizes many objects to high-enough precision to
grasp, but can fail due to specular effects on reflective objects.

C. Grasping

To propose grasp points, the robot collects a point cloud and
finds regions that fit into its gripper. Since Baxter only contains
a triangulation range finder located on the end effector, we
perform a raster scan by moving the sensor over the object.
This procedure is slow but enables us to collect 3D information
using only the sensors that come with Baxter, lowering the
barrier to entry to our scanning project. This map allows us
to propose grasps on specific physical locations of the object
measured in centimeters, to find the “center” of the object,
and to determine its principle axes. The depth map is slow to
build and usable maps can take over five minutes to construct,
so we only build the map once and reuse it in the future by
performing registration with RGB data alone.

A primary goal of developing this system is to gather
data with minimum interaction from the user. Human time
is valuable; we can make data collection less expensive by
enabling the robot to gather data on its own. There is a
tradeoff between data quality and autonomy. We can choose
to annotate general 3D grasps by hand, which are likely of
better quality than inferred crane grasps, but to do so requires
additional operator time. Instead, we can choose to let the
robot infer its own grasps, which takes much more robot time
but considerably less attention from the operator.

D. Scanning Time

A basic scan collects 144 variable-size pose-annotated RGB
image crops from a single height for detection, four constant
size images from different heights for visual servo registration,
and a raster IR depth map which can be used to infer grasp
proposals. It takes less than one minute of human time and
about 23 minutes of robot time to collect the data for the basic
scan. The reinforcement learning step takes about 50 seconds
per attempted grasp plus human time for any object resets.

A minimal scan collects the 144 RGB crops and the four
crops for registration. This process takes less than one minute
of human time and about five and a half minutes of robot time,
but it requires the operator to annotate a grasp. Annotation
requires less than 30 seconds to register the image plus
about 30 seconds per grasp, and additional time to verify
their quality. This annotation is necessary for us because
Baxter’s stock gripper is a parallel gripper and requires precise
placement in order to grip an object. Using other grippers [17]
may allow us to forgo annotation by always aiming at the
center of the object; additionally we aim to explore approaches
for category-based grasp proposals [22, 19].

Our system enables a quick turn-around between seeing
a new object and picking. For example, after seeing a talk
on picking Snap Circuit pieces [11], we used our system



(a) Picking a snap
circuit part.

(b) Setting the table using YCB objects.

Fig. 2. Our robot picking various objects.

to acquire a model and pick one of the parts, shown in
Figure 2(a). We recently received the new YCB dataset [6],
which contains nearly one hundred distinct objects for use
in benchmarking robotic grasping. To benchmark our system,
we performed the table setting task, which involves grasping
and placing a mug, bowl, plate, fork, spoon, and knife in
a predetermined place setting. Our score on the benchmark
was ten: the robot was able to move five of the objects to
the appropriate place on the table although it did not place
them precisely inside the goal region. To achieve this score,
we scanned the six objects in less than 60 minutes of robot
time and a few minutes of person time. After scanning, we
could detect and manipulate the objects individually, with the
exception of the plate, which does not fit into Baxter’s fairly
restrictive kinematic workspace. When the fork, spoon, and
knife were in the workspace at the same time, the robot often
confused them, because these objects are highly reflective on
their distinct regions. Despite the confusion, manipulation was
still fairly successful, because all utensils had similar geometry
and grasp points. Figure 2(b) shows the robot picking the YCB
objects.

III. ACQUIRING OBJECT MANIPULATION EXPERIENCES

Passive data collection by imaging the object provides a
powerful capability to detect and manipulate. However, much
richer data can be obtained by actively experimenting with
the object and learning about how it changes in response to
the robot’s actions. Moving the object can enable the robot
to learn how to pick it up, how its appearance changes in
different poses, what its stable poses are, and how to most
reliably detect, localize, and grasp the object. By focusing
on an instance-based approach, the robot can achieve high
reliability for specific objects, but also record its experiences
to create a corpus for later generalization of its knowledge to
new objects.

A. Acquiring Grasp Experiences

To autonomously learn how to pick an object, we take the
bandit-based approach in our previous work and summarized
here [18]. We consider crane grasps described by (x, y, θ)
triples, where (x, y) lies on a grid of one centimeter spacing
surrounding the object and θ is a grasp angle of either 0,
π
4 , π

2 , or 3π
4 . Correlation with hand designed 3 × 3 filters

yields grasp proposals which are often successful but fre-
quently not. To clean up the proposals, we frame the problem
of learning grasps as a multi-armed bandit problem, where
each (x, y, θ) triple corresponds to an arm. We saw a time
improvement over Thompson sampling [25, 3] in our case
with our own confidence bound based algorithm. When using
the top proposal grasp for each object, our system succeeded
5/10 times on average, but succeeded 0/10 times for some of
our objects. After reinforcement learning with our confidence
bound algorithm, pick success was 7.5/10 on average and
non-zero for all of our reported objects [18].

We performed our full basic scan and reinforcement learn-
ing for 30 objects. Before reinforcement learning, the grasp
proposal success rate was 5/10 on average. After learning,
the rate increased to 7.5/10 and many objects went from zero
to non-zero success.

B. Acquiring Pose Experiences

A key problem with our active grasping process manifests
when the robot knocks an object over during an interaction.
Because we are using instance-based models, when the robot
drops an object to a new stable pose, it can no longer detect,
localize or predict grasps. To address this problem we aim
to automatically detect the gravitationally stable poses of an
object and discover how to transition between them through
manipulation with its gripper and more generally with its
environment. We aim to acquire a model of the object that
allows the robot to learn how to move an object between stable
modes from experience, by actively grasping the object and
rotating it to new positions. This framework will enable the
robot to learn that a cup can be place upright, on its side, or
upside-down, and learn to plan manipulation actions to return
a cup to its canonical orientation.

IV. SHARING AND GENERALIZING OBJECT EXPERIENCES

Our goal is to enable researchers around the world to
contribute to our scanning project by installing software on
their robot, acquiring object models for pick-and-place at their
site, but also contributing to our effort to collect a corpus of
one million objects.

A. Sharing Object Experiences

To share object experiences, the robot stores all data it has
collected about the object in a folder as images and YAML [2]
files, including the point cloud, registered overhead views,
and RGB crops. After each scan, our software uploads the
object data to a central database. This database server supports
automatic upload, download, and searching of the data. In this
way researchers around the world can contribute to our project
by installing our software, scanning objects, and retrieving
models scanned by others. Figure 3 shows a screenshot from
our website where scanned models can be downloaded.

Transferring models across robots is challenging. When
the same system produces and uses a model, small errors in
algorithms and calibration can go unnoticed; a single system in
isolation need not be accurate if it is precise. Our system can



Fig. 3. Screenshot from our website that serves scanned objects.

automatically calibrate itself with minimal interaction from
the user, who need only supply a structured working surface,
which is allowed a generous amount of visual texture. Using
only items that come with Baxter and common household
goods, the robot can be calibrated and scanning objects in
less than an hour after ROS [20] is installed. Our software
stack is a single executable with few dependencies outside of
ROS and OpenCV [5], making it easy to install and deploy.
We have deployed our software on one other Baxter, where it
was able to scan objects and pick and we plan to scale up in
the coming months.

B. Generalizing Object Experiences

Our longer-term aim is to enable the robot to generalize
its experiences by exploiting this very large dataset. We aim
to predict general grasps from visual experience by using
our corpus as a training set of successful grasps paired with
images as the gripper approaches the object. Similarly we
can improve the robot’s ability to segment objects into parts
(such as handles and lids) and predict unseen components
from a single view by generalizing from the multi-view data.
This dataset will open up a variety of new research tasks by
leveraging state-of-the-art computer vision techniques [13] to
predict the observed effects of the robots actions, such as grasp
success, pose estimation accuracy, or specular effects.

V. CONCLUSION

We propose to create a new dataset of objects larger than
any existing dataset of its type by four orders of magnitude;
this dataset will transform robotic manipulation, as well as
object detection and localization in images and video, whether
it is surveillance footage or videos on YouTube. Our system
is functional and easy to use on a small scale. It enables us to
perform studies on human to robot interaction and is a proof
of concept which demonstrates that this technology could be
deployed for stocking and retrieval tasks.

We will enable the robot to actively explore the object to
learn its affordances, such as taking the top off of a bottle to
pour water out of it, the ability of a box to hold objects, or the
fact that the lights turn on when a switch is flicked. Attacking
this problem currently requires careful definitions and hand

structured models. We hope to make this process automatic by
teaching states and affordances to the robot and enabling it to
construct POMDPs [12] over those values through observation
and interaction with the world.

We aim to extend our approach to a mobile-manipulator
robot, enabling the robot to actively explore complex environ-
ments and learn affordances for objects such as doors, light
switches, and cupboards. A mobile robot can also learn about
objects by placing them in different locations and remembering
the ground truth pose, so it can actively detect appearance
information in different lighting conditions and clutter.

More generally our instance-based mapping approach to
objects and environments allows a robot to actively explore
through trial and error and self-annotate its world by remem-
bering the effects of its own actions. Leveraging this self-
annotation allows the robot to remember and generalize from
its own experiences.
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