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Abstract—There is a large variety of objects and appliances
in human environments, such as stoves, coffee dispensers, juice
extractors, and so on. It is challenging for a roboticist to program
a robot for each of these object types and for each of their
instantiations. In this work, we present a novel approach to
manipulation planning based on the idea that many household
objects share similarly-operated object parts. We formulate the
manipulation planning as a structured prediction problem and
design a deep learning model that can handle large noise in
the manipulation demonstrations and learns features from three
different modalities: point-clouds, language and trajectory. In or-
der to collect a large number of manipulation demonstrations for
different objects, we developed a new crowd-sourcing platform
called Robobarista. We test our model on our dataset consisting of
116 objects with 249 parts along with 250 language instructions,
for which there are 1225 crowd-sourced manipulation demon-
strations. We further show that our robot can even manipulate
objects it has never seen before. 1

I. INTRODUCTION

Consider the espresso machine in Figure 1 — even without
having seen the machine before, a person can prepare a cup
of latte by visually observing the machine and by reading a
natural language instruction manual. This is possible because
humans have vast prior experience of manipulating differently-
shaped objects that share common parts such as ‘handles’ and
‘knobs’. In this work, our goal is to enable robots to generalize
to different objects and tasks (e.g. toaster, sink, water fountain,
toilet, soda dispenser). Using a large knowledge base of
manipulation demonstrations, we build an algorithm that infers
a manipulation trajectory given a point-cloud and natural
language instructions.

The key idea in our work is that many objects designed for
humans share many similarly-operated object parts such as
‘handles’, ‘levers’, ‘triggers’, and ‘buttons’; and manipulation
motions can be transferred even among completely different
objects if we represent motions with respect to object parts.
For example, even if the robot has never seen the ‘espresso
machine’ before, the robot should be able to manipulate it if
it has previously seen similarly-operated parts in other objects
such as ‘urinal’, ‘soda dispenser’, and ‘restroom sink’ as
illustrated in Figure 2. Object parts that are operated in similar
fashion may not carry the same part name (e.g., ‘handle’) but
would rather have some similarity in their shapes allowing the
motion to be transferred between completely different objects.

If the sole task for the robot is to manipulate one specific
espresso machine or just a few types of ‘handles’, a roboticist

1Full technical report is available at http://robobarista.cs.cornell.edu

Fig. 1. First encounter of an espresso machine by our PR2 robot. Without
ever having seen the machine before, given the language instructions and a
point-cloud from Kinect sensor, our robot is capable of finding appropriate
manipulation trajectories from prior experience using our deep learning model.

could manually program the exact sequence to be executed.
However, in human environments, there is a large variety in
the types of object and their instances. Detection of objects or
object parts (e.g. ‘handle’) alone does not provide enough in-
formation for robots to actually manipulate them. Thus, rather
than relying on scene understanding techniques [3, 11, 6], we
directly use 3D point-cloud for manipulation planning using
machine learning algorithms.

The key challenges in our problem are in designing features
and a learning model that integrates three completely different
modalities of data (point-cloud, language and trajectory), and
in handling the significant noise in manipulation demonstra-
tions from crowd-sourcing. Deep learning has made impact in
related application areas (e.g., vision [10, 2], natural language
processing [14]). In this work, we present a deep learning
model that can handle large noise in labels, with a new
architecture that learns relations between the three different
modalities.

Such learning algorithms require a large dataset for training.
However, collecting such large dataset of expert demonstra-
tions is very expensive as it requires the presence of the
robot, an expert, and the object to be manipulated. In this
work, we show that we can crowd-source the demonstrations
of manipulation to the public over the web through our
Robobarista platform and outperform the model trained with
expert demonstrations. Furthermore, in contrast to previous
approaches based on learning from demonstration (LfD) that
learn a mapping from a state to an action [1], our work

http://robobarista.cs.cornell.edu


Fig. 2. Object part and natural language instructions input to manipulation trajectory as output. Objects such as the espresso machine consist of
distinct object parts, each of which requires a distinct manipulation trajectory for manipulation. For each part of the machine, we can re-use a manipulation
trajectory that was used for some other object with similar parts. So, for an object part in a point-cloud (each object part colored on left), we can find a
trajectory used to manipulate some other object (labeled on the right) that can be transferred (labeled in the center). With this approach, a robot can operate a
new and previously unobserved object such as the ‘espresso machine’, by successfully transferring trajectories from other completely different but previously
observed objects. Note that the input point-cloud is very noisy and incomplete (black represents missing points).

complements LfD as we focus on the entire manipulation
motion (as opposed to a sequential state-action mapping).

In order to validate our approach, we have collected a large
dataset of 116 objects with 250 natural language instructions
for which there are 1225 crowd-sourced manipulation tra-
jectories from 71 non-expert users via our Robobarista web
platform (http://robobarista.cs.cornell.edu). We also present
experiments on our robot using our approach. In summary,
the key contributions of this work are:
• a novel approach to manipulation planning via part-based

transfer between different objects,
• incorporation of crowd-sourcing to manipulation plan-

ning,
• introduction of deep learning model that handles three

modalities with noisy labels from crowd-sourcing, and
• contribution of the first large manipulation dataset and

experimental evaluation on this dataset.

II. OUR APPROACH

The intuition for our approach is that many differently-
shaped objects share similarly-operated object parts; thus, the
manipulation trajectory of an object can be transferred to a
completely different object if they share similarly-operated
parts. We formulate this problem as a structured prediction
problem and introduce a deep learning model that can handle
three modalities of the data while dealing with noisy labels in
crowd-sourced data. Then, we introduce the crowd-sourcing
platform Robobarista for easily scaling the collection of ma-
nipulation demonstrations to non-expert public on the web.
A. Problem Formulation

The goal is to learn a function f that maps a given pair
of point-cloud p ∈ P of object part and language l ∈ L to
a trajectory τ ∈ T that can manipulate the object part as
described by l:

f : P × L → T

Point-cloud Representation. Each instance of point-cloud
p ∈ P is represented as a set of n points in three-
dimensional Euclidean space where each point (x, y, z) is
represented with its RGB color (r, g, b): p = {p(i)}ni=1 =
{(x, y, z, r, g, b)(i)}ni=1. The size of the set vary by object

parts. These points are often obtained by stitching together
a sequence of sensor data from an RGBD sensor [9].
Trajectory Representation Each trajectory τ ∈ T is rep-
resented as a sequence of m waypoints, where each way-
point consists of gripper status g, translation (tx, ty, tz),
and rotation (rx, ry, rz, rw) with respect to the origin: τ =
{τ (i)}mi=1 = {(g, tx, ty, tz, rx, ry, rz, rw)(i)}mi=1 where g ∈
{“open”, “closed”, “holding”}. g depends on the type of the
end-effector, which we have assumed to be a two-fingered
gripper like that of PR2 or Baxter. The rotation is represented
as quaternions (rx, ry, rz, rw) instead of the more compact
Euler angles to prevent problems such as the gimbal lock [13].

B. Can transferred trajectories adapt without modification?

Even if we have a trajectory to transfer, a conceptually
transferable trajectory is not necessarily directly compatible if
it is represented with respect to an inconsistent reference point.
To make a trajectory compatible with a new situation without
modifying the trajectory, we need a representation method for
trajectories that allows a direct transfer of a trajectory without
any modification relying on point-cloud information.

Transferred trajectories become compatible across different
objects when trajectories are represented 1) in the task space
rather than the configuration space, and 2) in the principal-axis
based coordinate frame [8] of the object part rather than the
robot or the object.

III. DEEP LEARNING FOR MANIPULATION TRAJECTORY
TRANSFER

We use deep learning to find the most appropriate trajectory
for the given point-cloud and natural language. Deep learning
is mostly used for binary or multi-class classification or
regression problem [2] with a uni-modal input. We introduce a
deep learning model that can handle three completely different
modalities of point-cloud, language, and trajectory and solve
a structural problem with lots of label noise.

The original structured prediction problem (f : P×L → T )
is converted to a binary classification problem (f : (P ×L)×
T → {0, 1}). Intuitively, the model takes the input of point-
cloud, language, and trajectory and outputs whether it is a
good match (label y = 1) or a bad match (label y = 0).

http://robobarista.cs.cornell.edu


Fig. 3. Our deep learning model for transferring manipulation trajectory.
Our model takes the input x of three different modalities (point-cloud,
language, and trajectory) and outputs y whether it is a good match or bad
match, It first learns features separately (h1) for each modality and then learn
relation (h2) between input and output of original structured problem. Finally,
last hidden layer h3 learns relations of all these modalities.

Model. Given an input of point-cloud, language, and trajec-
tory, x = ((p, l), τ), as shown at the bottom of Figure 3, the
goal is to classify as either y = 0 or 1 at the top. The first h1

layer learns a separate layer of features for each modality of
x (= h0) [12]. The next layer learns the relations between the
input (p, l) and the output τ for the original structured prob-
lem, combining two modalities at a time. The left combines
point-cloud and trajectory and the right combines language
and trajectory. The third layer h3 learns the relation between
these two combinations of modalities and the final layer y
represents the binary label.

Every layer hi uses the rectified linear unit [18] as the acti-
vation function: hi = a(W ihi−1+bi) where a(·) = max(0, ·)
with weights to be learned W i ∈ RM×N , where M and N
represent the number of nodes in (i − 1)-th and i-th layer
respectively. The logistic regression is used in last layer for
predicting the final label y. The probability that x = ((p, l), τ)
is a “good match” is computed as: P (Y = 1|x,W, b) =
1/(1 + e−(Wx+b))
Label noise. When data contains lots of noisy label (noisy
trajectory τ ) from the crowd-sourced data and lacks a ground-
truth label (an expert demonstration), the crowd-sourced data
should not be treated equally as will be shown in Sec. V.

For every pair of input (p, l)i, we have Ti =
{τi,1, τi,2, ..., τi,ni

}, a set of trajectories submitted by the
crowd for (p, l)i. First, the best candidate label τ∗i ∈ Ti for
(p, l)i is selected as one of the labels with the smallest average
trajectory distance (DTW-MP in Sec. V) to other labels:

τ∗i = argmin
τ∈Ti

1

ni

ni∑
j=1

∆(τ, τi,j)

We assume that at least half of the crowd tried to give
a reasonable demonstration. Thus a demonstration with the
smallest average distance to all other demonstrations must be
a good demonstration.

Since we have found the most likely label τ∗i for (p, l)i,
we give the label 1 (“good match”) to ((p, l)i, τ

∗
i ), making it

the first positive example for the binary classification problem.
Then we find more positive examples by finding other trajec-
tories τ ′ ∈ T such that ∆(τ∗i , τ

′) < tg where tg is a threshold
determined by the expert. Similarly, negative examples are
generated by finding trajectories τ ′ ∈ T such that it is above
some threshold ∆(τ∗i , τ

′) > tw, where tw is determined by

Fig. 4. Visualization of a sample of learned high-level feature (two nodes)
at last hidden layer h3. The point-cloud in the picture is given arbitrary axis-
based color for visualization purpose. The left shows a node #1 at layer h3

that learned to (“turn”, “knob”, “clockwise”) along with relevant point-cloud
and trajectory. The right shows a node #51 at layer h3 that learned to “pull”
handle. The visualization is created by selecting a set of words, a point-cloud,
a trajectory that maximizes the activation at each layer and passing the highest
activated set of inputs to higher level.

expert, and they are given label 0 (“bad match”).
Pre-training. We use the stacked sparse de-noising auto-
encoder (SSDA) to train weights W i and bias bi for each
layer [17, 18]. Training occurs layer by layer from bottom
to top trying to reconstruct the previous layer using SSDA.
To learn parameters for layer i, we build an auto-encoder
which takes the corrupted output h̃i−1 (binomial noise with
corruption level p) of previous layer as input and minimizes
the loss function [18] with max-norm constraint [15]:

W ∗ = argmin
W
‖ĥi−1 − hi−1‖22 + λ‖hi‖1

where ĥi−1 = f(W ihi + bi) hi = f(W iT h̃i−1 + bi)

h̃i−1 = hi−1X ‖W i‖2 ≤ c
X ∼ B(1, p)

Fine-tuning. The pre-trained neural network can be fine-
tuned by minimizing the negative log-likelihood with the
stochastic gradient method with mini-batches: NLL =
−
∑|D|
i=0 log(P (Y = yi|xi,W, b)) To prevent over-fitting to

the training data, we used dropout [7], which randomly drops
a specified percentage of the output of every layer.
Inference. Given the trained neural network, inference step
finds the trajectory τ that maximizes the output through
sampling in the space of trajectory T : argmaxτ ′∈T P (Y =
1|x = ((p, l), τ ′),W, b). Since the space of trajectory T
is infinitely large, based on our idea that we can transfer
trajectories across objects, we only search trajectories that the
model has seen in training phase.
Data pre-processing. As seen in Sec. II-A, each of the
modality (p, l, τ) can have any length. Thus, we pre-process
to make each fixed in length.

We represent point-cloud p of any arbitrary length as an
occupancy grid where each cell indicates whether any point
lives in the space it represents. Because point-cloud p consists
of only the part of an object which is limited in size, we can
represent p using two occupancy grids of size 10×10×10 with
different scales: one with each cell representing 1×1×1(cm)
and the other with each cell representing 2.5×2.5×2.5(cm).

Each natural language instruction is represented as a fixed-
size bag-of-words representation with stop words removed.
Finally, for each trajectory τ ∈ T , we first compute its
smooth interpolated trajectory τs ∈ Ts, and then normalize
all trajectories Ts to the same length while preserving the
sequence of gripper status.



IV. ROBOBARISTA: CROWD-SOURCING PLATFORM

In order to collect a large number of manipulation demon-
strations from the crowd, we built a crowd-sourcing web plat-
form that we call Robobarista (see Fig. 5). It provides a virtual
environment where non-expert users can teach robots via a
web browser, without expert guidance or physical presence
with a robot and a target object.

The system simulates a situation where the user encounters
a previously unseen target object and a natural language in-
struction manual for its manipulation. Within the web browser,
users are shown a point-cloud in the 3-D viewer on the left
and a manual on the right. A manual may involve several
instructions, such as “Push down and pull the handle to open
the door”. The user’s goal is to demonstrate how to manipulate
the object in the scene for each instruction.

V. EXPERIMENTS

Data. In order to test our model, we have collected a dataset
of 116 point-clouds of objects with 249 object parts (examples
shown in Figure 6). There are also a total of 250 natural
language instructions (in 155 manuals).2 Using the crowd-
sourcing platform Robobarista, we collected 1225 trajectories
for these objects from 71 non-expert users on the Amazon Me-
chanical Turk. After a user is shown a 20-second instructional
video, the user first completes a 2-minute tutorial task. At each
session, the user was asked to complete 10 assignments where
each consists of an object and a manual to be followed.

For each object, we took raw RGB-D images with the
Microsoft Kinect sensor and stitched them using Kinect Fusion
[9] to form a denser point-cloud in order to incorporate
different viewpoints of objects. Objects range from kitchen
appliances such as ‘stove’, ‘toaster’, and ‘rice cooker’ to
‘urinal’, ‘soap dispenser’, and ‘sink’ in restrooms. The dataset
will be made available at http://robobarista.cs.cornell.edu
Metric. We propose a new measure DTW-MT for evaluating
manipulation trajectories that include translation, rotation and
gripper status. DTW-MT uses dynamic time warping and non-
linearly warps two trajectories of arbitrary lengths to produce
a matching between waypoints, and a cumulative distance is
the sum of pairwise distances between matched waypoints.

A. Results and Discussions

We evaluated all models on our dataset using 5-fold cross-
validation and the result is in Table I. Rows list the models
we tested including our model and baselines. Each column
shows one of three evaluations. First two use dynamic time
warping for manipulation trajectory (DTW-MT). The first
column shows averaged DTW-MT for each instruction manual
consisting of one or more language instructions. The second
column shows averaged DTW-MT for every test pair (p, l).

As DTW-MT values are not intuitive, we added the extra
column “accuracy”, which shows the percentage of trajectories
with DTW-MT value less than 10. Through expert surveys, we
found that when DTW-MT of manipulation trajectory is less

2Although not necessary for training our model, we also collected trajec-
tories from the expert for evaluation purposes.

TABLE I
RESULT ON OUR DATASET WITH 5-fold cross-validation. ROWS LIST MODELS WE

TESTED INCLUDING OUR MODEL AND BASELINES. AND EACH COLUMN SHOWS A

DIFFERENT METRIC USED TO EVALUATE THE MODELS. FOR DETAILS OF EACH

BASELINE, PLEASE REFER TO FULL TECH REPORT AVAILABLE AT PROJECT WEBSITE.

per manual per instruction
Models DTW-MT DTW-MT Accuracy (%)
chance 28.0 (±0.8) 27.8 (±0.6) 11.2 (±1.0)

object part classifier - 22.9 (±2.2) 23.3 (±5.1)
Structured SVM 21.0 (±1.6) 21.4 (±1.6) 26.9 (±2.6)

LSSVM + kinematic [16] 17.4 (±0.9) 17.5 (±1.6) 40.8 (±2.5)
similarity + random 14.4 (±1.5) 13.5 (±1.4) 49.4 (±3.9)

similarity + weights [5] 13.3 (±1.2) 12.5 (±1.2) 53.7 (±5.8)
Ours w/o Multi-modal 13.7 (±1.6) 13.3 (±1.6) 51.9 (±7.9)

Ours w/o Noise-handling 14.0 (±2.3) 13.7 (±2.1) 49.7 (±10.0)
Ours with Experts 12.5 (±1.5) 12.1 (±1.6) 53.1 (±7.6)

Our Model 13.0 (±1.3) 12.2 (±1.1) 60.0 (±5.1)

than 10, the robot came up with a reasonable trajectory and
will very likely be able to accomplish the given task.

Our full model performed 60.0% in accuracy (Table I),
outperforming the chance as well as other baseline algorithms
we tested on our dataset. Fig. 7 shows two examples of
successful transfers and one unsuccessful transfer by our
model. In the first example, the trajectory for pulling down
on a cereal dispenser is transferred to a coffee dispenser.
Because our approach to trajectory representation is based on
the principal axis (Sec. II-B), even though cereal and coffee
dispenser handles are located and oriented differently, the
transfer is a success.

We do not claim that our model can find and execute
manipulation trajectories for all objects. However, for a large
fraction of objects which the robot has never seen before, our
model outperforms other models in finding correct manipula-
tion trajectories. And, when we trained our full model with
expert demonstrations, which were collected for evaluation
purposes, it performed 53.1%.

The task similarity method, which searches for most similar
training task, gave a result of 53.7% but it requires access to
all of the raw training data (all point-clouds and language) at
test time, which leads to heavy computation and large storage.

For more traditional approach of using hand-coded features
with Structural SVM and Latent SSVM models, we experi-
mented with many state-of-the-art features for many months,
and it gave 40.8%. While it is extremely difficult to find a good
set of features for three modalities, our deep learning model
which does not require hand-designing of features learned
features at top layer h3 such as ones shown in Fig. 4.

B. Robotic Experiments.
As the PR2 robot stands in front of the object, the robot

is given a natural language instruction and segmented point-
cloud. Using our algorithm, manipulation trajectory to be
transferred were found for the given point-cloud and language.
Given the trajectories which are defined as set of waypoints,
the robot followed the trajectory by impedance controller
(ee_cart_imped) [4]. Our PR2 robot, which has never seen
the espresso machine before, was even able to make a cup of
latte with very little help from the expert. Several examples of
successful execution on PR2 robot are shown in Figure 8 and
in video at the project website: http://robobarista.cs.cornell.edu

http://robobarista.cs.cornell.edu
http://robobarista.cs.cornell.edu
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Fig. 5. Screen-shot of Robobarista, the crowd-sourcing platform running on Chrome browser. We have built Robobarista platform for collecting a large
number of crowd demonstration for teaching the robot.

Fig. 6. Examples from our dataset which consist of a natural language instruction (top), an object part in point-cloud representation (highlighted), and
a manipulation trajectory (below) collected via Robobarista. Objects range from kitchen appliances such as stove and rice cooker to urinals and sinks in
restrooms. As our trajectories are collected from non-experts, they vary in quality from being likely to complete the manipulation task successfully (left of
dashed line) to being unlikely to do so successfully (right of dashed line).

Fig. 7. Examples of successful and unsuccessful transfers of manipulation trajectory from left to right using our model. In first two examples, though
the robot has never seen the ‘coffee dispenser’ and ‘slow cooker’ before, the robot has correctly identified that the trajectories of ‘cereal dispenser’ and ‘DC
power supply’, respectively, can be used to manipulate them.

Fig. 8. Examples of transferred trajectories being executed on PR2. On the left, PR2 is able to rotate the ‘knob’ to turn the lamp on. On the right, using
two transferred trajectories, PR2 is able to hold the cup below the ‘nozzle’ and press the ‘lever’ of ‘coffee dispenser’.
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