References:

- 1. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross, Gordon & Bagnell (2010). DAGGER algorithm
- 2. Reinforcement and Imitation Learning via Interactive No-Regret **Learning** Ross & Bagnell (2014). AGGREVATE algorithm
- 3. Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning Guo et al. (2014)
- 4. SEARN in Practice Daume et al. (2006)

DAGGER and Friends

- John Schulman
 - 2015/10/5

Data Mismatch Problem

Learned Policy

No data on how to recover Expert trajectory

Data Mismatch Problem

supervised learning + control (NAIVE)

Compounding Errors

error at time t with probability ε

$E[\text{Total errors}] \leq \epsilon(T + (T-1) + (T-2) + ... + 1) \propto \epsilon T^2$

errors at subsequent T - t timesteps

Initialize $\pi_1, \pi_2, \ldots, \pi_T$ arbitrarily.

for t = 1 to T do

Sample multiple t-step trajectories by executing the policies $\pi_1, \pi_2, \ldots, \pi_{t-1}$, starting from initial states drawn from the initial state distribution. Query expert for states encountered at time step t. Get dataset $\mathcal{D} = \{(s_t, \pi^*(s_t))\}$ of states, actions taken by expert at time step t. Train classifier $\pi_t = \arg \min_{\pi \in \Pi} \sum_{(s,a) \in \mathcal{D}} \ell(s, a, \pi).$ end for

Forward Algorithm

- **Return** non-stationary policy $\hat{\pi}$, such that at time t in state s, $\hat{\pi}(s,t) = \pi_t(s)$

E[total errors] ≤ εT

DAGGER

Execute current policy and Query Expert

DAGGER

Initialize $\mathcal{D} \leftarrow \emptyset$. Initialize $\hat{\pi}_1$ to any policy in Π . for i = 1 to N do Let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$. Sample T-step trajectories using π_i . Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visit Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i$. Train classifier $\hat{\pi}_{i+1}$ on \mathcal{D} (or use on end for Return best $\hat{\pi}_i$ on validation.

Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visited states by π_i and actions given by expert.

Train classifier $\hat{\pi}_{i+1}$ on \mathcal{D} (or use online learner to get $\hat{\pi}_{i+1}$ given new data \mathcal{D}_i).

AGGREVATE

Initialize $\mathcal{D} \leftarrow \emptyset$. Initialize $\hat{\pi}_1$ to any policy in Π . for i = 1 to N do Let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$. Sample T-step trajectories using π_i . Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visit Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i$. Train classifier $\hat{\pi}_{i+1}$ on \mathcal{D} (or use on end for Return best $\hat{\pi}_i$ on validation.

A*(s,a) for all actions a

Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visited states by π_i and actions given by expert.

Train classifier $\hat{\pi}_{i+1}$ on \mathcal{D} (or use online learner to get $\hat{\pi}_{i+1}$ given new data \mathcal{D}_i).

i.e., minimize $\Sigma_n A^*(s_n, \pi(s_n))$

Empirical Demonstrations

Online Learning + Regret

- At nth step, algorithm chooses π_n , receives loss $L_n(\pi_n)$
- Want to minimize $\Sigma_n L_n(\pi_n)$
- Regret: $\Sigma_n L_n(\pi_n) \min_{\pi} \Sigma_n L_n(\pi)$
 - total regret ~ \sqrt{T}

• Learn from a stream of data, might be non-stationary or adversarial

• e.g. for convex L with online gradient descent, one can show that

Great review: Shalev-Shwartz, Shai, and Yoram Singer. "Online learning: Theory, algorithms, and applications." (2007).

AGGREVATE: Theory

 $\eta(\pi) - \eta(\pi^*) = \mathbb{E}_{\tau;\pi} \left| \sum_{t=1}^T A^{\pi}(s_t, a_t) \right|$

Suboptimality of nth policy: $L_n(\pi_n)$

AGGREVATE ($\beta = 0$)

- At nth step, sample trajectories using π_n
 - suboptimality is $L_n(\pi_n)$
- Update policy based on new data to get π_{n+1}
 - e.g., take $\pi_{n+1} = \operatorname{argmin}_{\pi} \Sigma_n L_n(\pi)$

AGGREVATE ($\beta = 0$)

Now, consider π , obtained by randomly sampling n in {1,2,...,N}

$$\eta(\bar{\pi}) - \eta(\pi^*) = \frac{1}{N} \frac{1}{\gamma}$$

=> Suboptimality is bounded by regret of learning algorithm

N $\sum_{n=1} L_n(\pi_n)$

AGGREVATE ($\beta = 0$)

• Sample trajectories

Application to Atari

Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo Computer Science and Eng. University of Michigan guoxiao@umich.edu

Honglak Lee

Computer Science and Eng. University of Michigan honglak@umich.edu

NIPS 2014 Monte Carlo Tree Search (UCT) + ConvNet Policy/Classifier

Satinder Singh Computer Science and Eng. University of Michigan baveja@umich.edu

Richard Lewis Department of Psychology University of Michigan rickl@umich.edu

Xiaoshi Wang Computer Science and Eng. University of Michigan xiaoshiw@umich.edu

MONTE CARLOTREE SEARCH

Coulom, Rémi. "Efficient selectivity and backup operators in Monte-Carlo tree search." Computers and games. Springer Berlin Heidelberg, 2007. 72-83.

Kocsis, Levente, and Csaba Szepesvári. "Bandit based monte-carlo planning." Machine Learning: ECML 2006. Springer Berlin Heidelberg, 2006. 282-293. (UCT Algorithm)

Kearns, Michael, Yishay Mansour, and Andrew Y. Ng. "A sparse sampling algorithm for near-optimal planning in large Markov decision processes." Machine Learning 49.2-3 (2002): 193-208.

Application to Atari

cool finding — low level filters show game objects

Application to Atari

Agent	B.Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S.Invaders
DQN	4092	168	470	20	1952	1705	581
-best	5184	225	661	21	4500	1740	1075
UCC	5342 (20)	175 (5.63)	558 (14)	19 (0.3)	11574(44)	2273 (23)	672 (5.3)
-best	10514	351	942	21	29725	5100	1200
-greedy	5676	269	692	21	19890	2760	680
UCC-I	5388 (4.6)	215 (6.69)	601 (11)	19 (0.14)	13189 (35.3)	2701 (6.09)	670 (4.24)
-best	10732	413	1026	21	29900	6100	910
-greedy	5702	380	741	21	20025	2995	692
UCR	2405 (12)	143 (6.7)	566 (10.2)	19 (0.3)	12755 (40.7)	1024 (13.8)	441 (8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent	B.Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S.Invaders
UCT	7233	406	788	21	18850	3257	2354

but... 800 games * 1000 actions/game * 10000 rollouts/ action * 300 steps/rollout = 2.4e12 steps