
DAGGER and Friends

John Schulman
2015/10/5

References:

1. A Reduction of Imitation Learning and Structured Prediction to
No-Regret Online Learning, Ross, Gordon & Bagnell (2010).
DAGGER algorithm

2. Reinforcement and Imitation Learning via Interactive No-Regret
Learning Ross & Bagnell (2014). AGGREVATE algorithm

3. Deep Learning for Real-Time Atari Game Play Using Offline
Monte-Carlo Tree Search Planning Guo et al. (2014)

4. SEARN in Practice Daume et al. (2006)

Data Mismatch Problem4 CHAPTER 1. INTRODUCTION

Expert trajectory
Learned Policy

No data on
how to recover

Figure 1.1: Mismatch between the distribution of training and test inputs in a driving
scenario.

many state-of-the-art software system that we use everyday. Systems based on super-

vised learning already translate our documents, recommend what we should read (Yue

and Guestrin, 2011), watch (Toscher et al., 2009) or buy, read our handwriting (Daumé

III et al., 2009) and filter spam from our emails (Weinberger et al., 2009), just to name a

few. Many subfields of artificial intelligence, such as natural language processing (the un-

derstanding of natural language by computers) and computer vision (the understanding

of visual input by computers), now deeply integrate machine learning.

Despite this widespread proliferation and success of machine learning in various fields

and applications, machine learning has had a much more limited success when applied

in control applications, e.g. learning to drive from demonstrations by human drivers.

One of the main reason behind this limited success is that control problems exhibit

fundamentally di↵erent issues that are not typically addressed by standard supervised

learning techniques.

In particular, much of the theory and algorithms for supervised learning are based on

the fundamental assumption that inputs/observations perceived by the predictor to make

its predictions are independent and always coming from the same underlying distribution

during both training and testing (Hastie et al., 2001). This ensures that after seeing

enough training examples, we will be able to predict well on new examples (at least

in expectation). However, this assumption is clearly violated in control tasks as these

are inherently dynamic and sequential : one must perform a sequence of actions over

time that have consequences on future inputs or observations of the system, to achieve a

goal or successfully perform the task. As predicting actions to execute influence future

inputs, this can lead to a large mismatch between the inputs observed under training

demonstrations, and those observed during test executions of the learned behavior. This

is illustrated schematically in Figure 1.1.

This problem has been observed in previous work. Pomerleau (1989), who trained a

Data Mismatch Problem

supervised learning supervised learning +
control (NAIVE)

train (x,y) ~ D s ~ dπ*

test (x,y) ~ D s ~ dπ

Compounding Errors

error at time t
with probability ε

errors at subsequent
T - t timesteps

E[Total errors] ≲ ε(T + (T-1) + (T-2) + …+ 1) ∝ εT2

Forward Algorithm3.4. ITERATIVE FORWARD TRAINING APPROACH 57

Initialize ⇡
1

,⇡
2

, . . . ,⇡T arbitrarily.
for t = 1 to T do

Sample multiple t-step trajectories by executing the policies ⇡
1

,⇡
2

, . . . ,⇡t�1

, starting
from initial states drawn from the initial state distribution.
Query expert for states encountered at time step t.
Get dataset D = {(st,⇡⇤(st))} of states, actions taken by expert at time step t.
Train classifier ⇡t = argmin⇡2⇧

P
(s,a)2D `(s, a,⇡).

end for
Return non-stationary policy ⇡̂, such that at time t in state s, ⇡̂(s, t) = ⇡t(s)

Algorithm 3.4.1: Forward Training Algorithm.

policies ⇡
1

,⇡
2

, . . . ,⇡t�1

for time steps 1 to t� 1, and then asks the expert which action

he would perform in the state encountered at time t. The state encountered at time t

with the associated expert action are recorded, and data is collected through multiple

t-step trajectories generated this way. The policy that best mimics the expert on these

states encountered at time t, after execution of the learned policies ⇡
1

to ⇡t�1

, is chosen

for ⇡t. This algorithm iterates for T iterations, to learn a policy for all time steps. It is

detailed in Algorithm 3.4.1.

By training sequentially in this way, each policy ⇡t is trained under the distribution of

states it is going to encounter during test execution. Additionally, if some of the policies

errors, then the expert will demonstrate the necessary recovery behaviors at future steps,

and hence following policies will be able to learn these behaviors.

Analysis

We now provide a complete analysis of this approach below, and contrast it with the

previous guarantees of the supervised learning approach. This analysis again seeks to

answer a similar question as before: if we can achieve small loss (on average) during

training at mimicking the expert behavior over the iterations, how well will the learned

policy perform the task?

Let ⇡̂ denote the non-stationary policy learned by the Forward Training algorithm

that executes ⇡
1

,⇡
2

, . . . ,⇡T in sequence over T steps. For each time step t, denote

✏t = Est⇠dt⇡̂ ,a⇠⇡⇤
(st)[`(st, a,⇡t)] the expected training surrogate loss of the learned policy

⇡t for time t. Denote ✏ = 1

T

PT
t=1

✏t, the average expected training surrogate loss over

the T iterations of training. For this Forward Training procedure, we also have that the

expected surrogate loss at test time, under trajectories generated by ⇡̂, is exactly ✏, i.e.

Es⇠d⇡̂ ,a⇠⇡⇤
(s)[`(s, a, ⇡̂)] = ✏. Again, this is because each policy ⇡t is trained under the

state distribution dt⇡̂, the same it encounters at test time.

E[total errors] ≲ εT

DAGGER
3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 69

Execute current policy and Query Expert
New Data

Supervised Learning

All previous data
Aggregate
Dataset

Steering
from expert

New
Policy

Figure 3.5: Depiction of the DAGGER procedure for imitation learning in a driving
scenario.

Test
Execu*on

Collect
Data

No‐Regret
Online Learner

Expert

Learned
Policy Done?

yes no
iπ̂

Best
Policy

iπ̂

e.g. Gradient
Descent

Figure 3.6: Diagram of the DAGGER algorithm with a general online learner for imita-
tion learning.

policies, with relatively few data points, may make many more mistakes and visit states

that are irrelevant as the policy improves. We will typically use �
1

= 1 so that we do

not have to specify an initial policy ⇡̂
1

before getting data from the expert’s behavior.

Then we could choose �i = pi�1 to have a probability of using the expert that decays

exponentially as in SMILE and SEARN. The only requirement is that {�i} be a sequence

such that �N = 1

N

PN
i=1

�i ! 0 as N ! 1. The simple, parameter-free version of the

DAGGER
70 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

Initialize D ;.
Initialize ⇡̂

1

to any policy in ⇧.
for i = 1 to N do
Let ⇡i = �i⇡⇤ + (1� �i)⇡̂i.
Sample T -step trajectories using ⇡i.
Get dataset Di = {(s,⇡⇤(s))} of visited states by ⇡i and actions given by expert.
Aggregate datasets: D D

S
Di.

Train classifier ⇡̂i+1

on D (or use online learner to get ⇡̂i+1

given new data Di).
end for
Return best ⇡̂i on validation.

Algorithm 3.6.1: DAGGER Algorithm.

algorithm described above is the special case �i = I(i = 1) for I the indicator function,

which often performs best in practice (see Chapter 5). The general DAGGER algorithm

is detailed in Algorithm 3.6.1.

Analysis

We now provide a complete analysis of this DAGGER procedure, and show how the

strong no-regret property of online learning procedures can be leveraged, in this inter-

active learning procedure, to obtain good performance guarantees. Again here, we seek

to provide a similar analysis to previously analyzed methods that seeks to answer the

following question : if we can find good policies at mimicking the expert on the aggre-

gate dataset we collect during training, then how well the learned policy will perform

the task?

The theoretical analysis of DAGGER relies primarily on seeing how learning iter-

atively in this algorithm can be viewed as an online learning problem and using the

no-regret property of the underlying Follow-The-Leader algorithm on strongly convex

losses (Kakade and Tewari, 2009) which picks the sequence of policies ⇡̂
1:N . Hence, the

presented results also hold more generally if we use any other no-regret online learning

algorithm we would apply to our imitation learning setting. In particular, we can con-

sider the results here a reduction of imitation learning to no-regret online learning where

we treat mini-batches of trajectories under a single policy as a single online-learning

example. In addition, in Chapter 9, we also show that the data aggregation procedure

works generally whenever the supervised learner applied to the aggregate dataset has

su�cient stability properties. We refer the reader to Chapter 2 for a review of concepts

related to online learning and no regret that is used for this analysis. All the proofs of

the results presented here are in Appendix A.

AGGREVATE
70 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

Initialize D ;.
Initialize ⇡̂

1

to any policy in ⇧.
for i = 1 to N do
Let ⇡i = �i⇡⇤ + (1� �i)⇡̂i.
Sample T -step trajectories using ⇡i.
Get dataset Di = {(s,⇡⇤(s))} of visited states by ⇡i and actions given by expert.
Aggregate datasets: D D

S
Di.

Train classifier ⇡̂i+1

on D (or use online learner to get ⇡̂i+1

given new data Di).
end for
Return best ⇡̂i on validation.

Algorithm 3.6.1: DAGGER Algorithm.

algorithm described above is the special case �i = I(i = 1) for I the indicator function,

which often performs best in practice (see Chapter 5). The general DAGGER algorithm

is detailed in Algorithm 3.6.1.

Analysis

We now provide a complete analysis of this DAGGER procedure, and show how the

strong no-regret property of online learning procedures can be leveraged, in this inter-

active learning procedure, to obtain good performance guarantees. Again here, we seek

to provide a similar analysis to previously analyzed methods that seeks to answer the

following question : if we can find good policies at mimicking the expert on the aggre-

gate dataset we collect during training, then how well the learned policy will perform

the task?

The theoretical analysis of DAGGER relies primarily on seeing how learning iter-

atively in this algorithm can be viewed as an online learning problem and using the

no-regret property of the underlying Follow-The-Leader algorithm on strongly convex

losses (Kakade and Tewari, 2009) which picks the sequence of policies ⇡̂
1:N . Hence, the

presented results also hold more generally if we use any other no-regret online learning

algorithm we would apply to our imitation learning setting. In particular, we can con-

sider the results here a reduction of imitation learning to no-regret online learning where

we treat mini-batches of trajectories under a single policy as a single online-learning

example. In addition, in Chapter 9, we also show that the data aggregation procedure

works generally whenever the supervised learner applied to the aggregate dataset has

su�cient stability properties. We refer the reader to Chapter 2 for a review of concepts

related to online learning and no regret that is used for this analysis. All the proofs of

the results presented here are in Appendix A.

A*(s,a) for all
actions a

i.e., minimize
Σn A*(sn,π(sn))

Empirical Demonstrations
98

CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM
DEMONSTRATIONS TECHNIQUES

Figure 5.1: Image from Super Tux Kart’s Star Track.

of the image, the linear controller predicts and executes the steering ŷ = w>x + b,

where w and b are the parameters that we learn from training data. Given the current

800x600 RGB pixel game image, we use as features directly the LAB color values of

each pixel in a 25x19 resized image. Given a dataset of observed features and associated

steering {(xi, yi)}ni=1

, we optimize (w, b) by minimizing the ridge regression objective

L(w, b) = 1

n

Pn
i=1

(w>xi + b � yi)2 +
�
2

w>w, with regularizer � = 10�3 chosen from a

preliminary validation dataset.

We compare performance on a race track called Star Track. As this track floats in

space, the kart can fall o↵ the track at any point (the kart is repositioned at the center

of the track when this occurs). We measure performance in terms of the average number

of falls per lap. We compare two other approaches to DAGGER on this task: 1) the

traditional supervised learning approach, and 2) another approach, called SMILE, from

our previous work in (Ross and Bagnell, 2010), which is an imitation learning variant of

SEARN (described in more details in the next chapter) that also has similar guarantees

to Forward Training and DAGGER.

For SMILE and DAGGER, we used 1 lap of training per iteration (⇠1000 data

points) and run both methods for 20 iterations. For SMILE we choose parameter ↵ = 0.1

as in Ross and Bagnell (2010), and for DAGGER the parameter �i = I(i = 1) for I the

indicator function. Figure 5.2 shows 95% confidence intervals on the average falls per

lap of each method after 1, 5, 10, 15 and 20 iterations as a function of the total number

of training data collected.

We first observe that with the baseline supervised approach where training always

occurs under the human player’s trajectories that performance does not improve as more

data is collected. This is because most of the training laps are all very similar and do not

100
CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM

DEMONSTRATIONS TECHNIQUES

essence it is cheating, as it has knowledge of the future unobserved terrain, enemies and

objects, as well as exactly how enemies are moving or exactly when they may suddenly

appear (e.g. it knows exactly when bullets are going to be fired by cannons), which

is all information not typically available to a human player. By using all this “illegal”

information, we could however obtain a very good planning agent that could complete

most randomly generated level of any di�culty, and that is as good, if not better, than

the world’s best human players. By learning from this expert, we hope to obtain a good

agent that only uses “legal” information observed in the current game image.1

In Super Mario Bros., an action consists of 4 binary variables indicating which subset

of buttons we should press in {left,right,jump,speed}. We attempt to learn 4 independent

Figure 5.3: Captured image from Super Mario Bros.

linear SVMs (binary classifiers) that each predict whether one of the button should be

pressed, and updates the action at 5Hz based on the vector of image features. For

the input features x, each image is discretized in a grid of 22x22 cells centered around

Mario and we extract 14 binary features to describe each cell (types of ground, enemies,

blocks and other special items). A history of those features over the last 4 time steps

is used, in addition to other features describing the last 6 actions and the state of

1While it may seem a contrived application, such scenarios, where imitation learning is conducted
by learning from another computational agent, rather than a human, can be of practical interest. For
instance we may have a robot that can operate well autonomously with a very expensive sensor that
provides lots of information, and/or a very computationally expensive control algorithm, and we would
like to replace these expensive sensors by less informative cheaper ones, or replace the control algorithm
by one that needs less computational resources, e.g. for cheaper mass deployment and commercialization.
In such case, we could attempt to use imitation learning to learn good behavior when the robot only
has access to the cheaper sensors, from the current autonomous behavior of the robot with access to the
more expensive sensor and/or the computationally expensive control algorithm. Our Super Mario Bros
application provides an exact example of this, where we seek to replace a slow planner with access to
lots of information, by a fast decision rule with access to fewer information.

104
CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM

DEMONSTRATIONS TECHNIQUES

Figure 5.5: Application of DAGGER for autonomous MAV flight through dense forest
areas. The system uses purely visual input from a single camera and imitates human
reactive control.

controller stabilizes the drone and allows control of the UAV through high-level desired

velocity commands (forward-backward, left-right and up-down velocities, as well as yaw

rotation) and can reach a maximum velocity of about 5m/s. Communication is based on

WiFi, with camera images streamed at about 10 � 15Hz. This allows us to control the

drone on a separate computer that receives and processes the images from the drone,

and then sends commands to the drone at 10Hz.

Figure 5.6: The Parrot ARDrone, a cheap commercial quadrotor.

Controller

We aim to learn a simple linear controller of the drones left-right velocity that mimics the

pilots behavior to avoid trees as the drone moves forward at fixed velocity and altitude.

That is, given a vector of visual features x from the current image, we compute a left-

Online Learning + Regret
• Learn from a stream of data, might be non-stationary or adversarial

• At nth step, algorithm chooses πn, receives loss Ln(πn)

• Want to minimize Σn Ln(πn)

• Regret: Σn Ln(πn) - minπ Σn Ln(π)

• e.g. for convex L with online gradient descent, one can show that
total regret ~ √T

Great review: Shalev-Shwartz, Shai, and Yoram Singer. "Online
learning: Theory, algorithms, and applications." (2007).

AGGREVATE: Theory

CHAPTER 4

Learning from Demonstrations and Search

1. Follow the Leader

errors / ✏T

2(120)

⌘(⇡)� ⌘(⇡⇤) = E
⌧ ;⇡

"
TX

t=1

A

⇡(s
t

, a

t

)

#
(121)

L

n

(⇡) := E
⌧ ;⇡n

"
TX

t=1

A

⇡

⇤
(s

t

,⇡(s
t

))

#
(122)

⇡̄

:= randomly sample n 2 {1, 2, . . . , N}, then use policy ⇡

n

(123)

⌘(⇡̄)� ⌘(⇡⇤) =
1

N

NX

n=1

L

n

(⇡
n

)L
N

(⇡
N

)(124)

2. Using Trajectory Optimization

32

Suboptimality of nth policy:

CHAPTER 4

Learning from Demonstrations and Search

1. Follow the Leader

errors / ✏T

2(120)

⌘(⇡)� ⌘(⇡⇤) = E
⌧ ;⇡

"
TX

t=1

A

⇡(s
t

, a

t

)

#
(121)

L

n

(⇡) := E
⌧ ;⇡n

"
TX

t=1

A

⇡

⇤
(s

t

,⇡(s
t

))

#
(122)

⇡̄

:= randomly sample n 2 {1, 2, . . . , N}, then use policy ⇡

n

(123)

⌘(⇡̄)� ⌘(⇡⇤) =
1

N

NX

n=1

L

n

(⇡
n

)L
N

(⇡
N

)(124)

L

n

(⇡
n

)(125)

2. Using Trajectory Optimization

32

AGGREVATE (β=0)

• At nth step, sample trajectories using πn

• suboptimality is Ln(πn)

• Update policy based on new data to get πn+1

• e.g., take πn+1 = argminπ Σn Ln(π)

AGGREVATE (β=0)

• Now, consider π, obtained by randomly sampling n in {1,2,…,N}

• => Suboptimality is bounded by regret of learning algorithm

CHAPTER 4

Learning from Demonstrations and Search

1. Follow the Leader

errors / ✏T

2(120)

⌘(⇡)� ⌘(⇡⇤) = E
⌧ ;⇡

"
TX

t=1

A

⇡(s
t

, a

t

)

#
(121)

L

n

(⇡) := E
⌧ ;⇡n

"
TX

t=1

A

⇡

⇤
(s

t

,⇡(s
t

))

#
(122)

⇡̄

:= randomly sample n 2 {1, 2, . . . , N}, then use policy ⇡

n

(123)

⌘(⇡̄)� ⌘(⇡⇤) =
1

N

NX

n=1

L

n

(⇡
n

)L
N

(⇡
N

)(124)

L

n

(⇡
n

)(125)

2. Using Trajectory Optimization

32

AGGREVATE (β=0)

• Sample trajectories

Application to Atari
Deep Learning for Real-Time Atari Game Play

Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo
Computer Science and Eng.

University of Michigan
guoxiao@umich.edu

Satinder Singh
Computer Science and Eng.

University of Michigan
baveja@umich.edu

Honglak Lee
Computer Science and Eng.

University of Michigan
honglak@umich.edu

Richard Lewis
Department of Psychology

University of Michigan
rickl@umich.edu

Xiaoshi Wang
Computer Science and Eng.

University of Michigan
xiaoshiw@umich.edu

Abstract
The combination of modern Reinforcement Learning and Deep Learning ap-
proaches holds the promise of making significant progress on challenging appli-
cations requiring both rich perception and policy-selection. The Arcade Learning
Environment (ALE) provides a set of Atari games that represent a useful bench-
mark set of such applications. A recent breakthrough in combining model-free
reinforcement learning with deep learning, called DQN, achieves the best real-
time agents thus far. Planning-based approaches achieve far higher scores than the
best model-free approaches, but they exploit information that is not available to
human players, and they are orders of magnitude slower than needed for real-time
play. Our main goal in this work is to build a better real-time Atari game playing
agent than DQN. The central idea is to use the slow planning-based agents to pro-
vide training data for a deep-learning architecture capable of real-time play. We
proposed new agents based on this idea and show that they outperform DQN.

1 Introduction
Many real-world Reinforcement Learning (RL) problems combine the challenges of closed-loop
action (or policy) selection with the already significant challenges of high-dimensional perception
(shared with many Supervised Learning problems). RL has made substantial progress on theory
and algorithms for policy selection (the distinguishing problem of RL), but these contributions have
not directly addressed problems of perception. Deep learning (DL) approaches have made remark-
able progress on the perception problem (e.g., [13, 20]) but do not directly address policy selection.
RL and DL methods share the aim of generality, in that they both intend to minimize or eliminate
domain-specific engineering, while providing “off-the-shelf” performance that competes with or ex-
ceeds systems that exploit control heuristics and hand-coded features. Combining modern RL and
DL approaches therefore offers the potential for general methods that address challenging applica-
tions requiring both rich perception and policy-selection.

The Arcade Learning Environment (ALE) is a relatively new and widely accessible class of bench-
mark RL problems [1] that provide a particularly challenging combination of policy selection and
perception. ALE includes an emulator and a large number of Atari 2600 (a 1970s–80s home-video
console) games. The complexity and diversity of the games—both in terms of perceptual challenges
in mapping pixels to useful features for control and in terms of the control policies needed—make
ALE a useful set of benchmark RL problems, especially for evaluating general methods intended to
achieve success without hand-engineered features.

1

NIPS 2014
Monte Carlo Tree Search (UCT) + ConvNet Policy/Classifier

Coulom, Rémi. "Efficient selectivity and backup operators in Monte-Carlo tree search." Computers and games.
Springer Berlin Heidelberg, 2007. 72-83.

Kocsis, Levente, and Csaba Szepesvári. "Bandit based monte-carlo planning.” Machine Learning: ECML 2006.
Springer Berlin Heidelberg, 2006. 282-293. (UCT Algorithm)

Kearns, Michael, Yishay Mansour, and Andrew Y. Ng. "A sparse sampling algorithm for near-optimal planning in large
Markov decision processes." Machine Learning 49.2-3 (2002): 193-208.

Application to Atari

“submarine”

“enemy”

“diver”

“enemy+diver”

frame: t-3 t-2 t-1 t

Figure 2: Visualization of the first-layer features learned from Seaquest. (Left) visualization of four first-layer
filters; each filter covers four frames, showing the spatio-temporal template. (Middle) a captured screen. (Right)
gray-scale version of the input screen which is fed into the CNN. Four filters were color-coded and visualized
as dotted bounding boxes at the locations where they get activated. This figure is best viewed in color.

keeping a batch size of 200. The performance of UCTtoClassification improves from 558 to 581

while the performance of UCTtoClassification-Interleaved improves from 601 to 670, i.e., the in-
terleaved method improved more in absolute and percentage terms as we increased the amount of
training data. This is encouraging and is further confirmation of the hypothesis that motivated the
interleaved method, because the interleaved input distribution would be even more like that of the
final agent with the larger data set.

Figure 3: Visualization of the second-layer
features learned from Seaquest.

Learned Features from Convolutional Layers. We
provide visualizations of the learned filters in order to
gain insight on what the CNN learns. Specifically, we
apply the “optimal stimuli” method [7, 14] to visualize
the features CNN learned after training. The method
picks the input image patches that generate the greatest
responses after convolution with the trained filters. We
select 8⇥ 8⇥ 4 input patches to visualize the first con-
volutional layer features and 20⇥20⇥4 to visualize the
second convolutional layer filters. Note that these patch
sizes correspond to receptive field sizes of the learned
features in each layer.

In Figure 2, we show four first-layer filters of the CNN
trained from Seaquest for the UCTtoClassification-
agent. Specifically, each filter covers four frames of
8⇥ 8 pixels, which can be viewed as a spatio-temporal
template that captures specific patterns and their tempo-
ral changes. We also show an example screen capture
and visualize where the filters get activated in the gray-scale version of the image (which is the actual
input to the CNN model). The visualization suggests that the first-layer filters capture “object-part”
patterns and their temporal movements.

Figure 3 visualizes the four second-layer features via the optimal stimulus method, where each row
corresponds to a filter. We can see that the second-layer features capture bigger spatial patterns
(often covering beyond the size of individual objects), while encoding interactions between objects,
such as two enemies moving together, and a submarine moving along a direction. Overall, these
qualitative results suggest that the CNN learns relevant patterns useful for game playing.

Visualization of Learned Policy. Here we present visualizations of the policy learned by the UCT-
toClassification agent with the aim of illustrating both what it does well and what it does not.

Figure 4 shows the policy learned by UCTtoClassification to destroy nearby enemies. The CNN
changes the action from ”Fire” to ”Down+Fire” at time step 70 when the enemies first show up at
the right columns of the screen, which will move the submarine to the same horizontal position of the
closest enemy. At time step 75, the submarine is at the horizontal position of the closest enemy and

7

cool finding — low level filters show game objects

Application to Atari
Table 1: Performance (game scores) of the four real-time game playing agents, where UCR is short for UCT-
toRegression, UCC is short for UCTtoClassification, and UCC-I is short for UCTtoClassification-Interleaved.

Agent B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders

DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075

UCC 5342 (20) 175 (5.63) 558 (14) 19 (0.3) 11574(44) 2273 (23) 672 (5.3)
-best 10514 351 942 21 29725 5100 1200
-greedy 5676 269 692 21 19890 2760 680

UCC-I 5388 (4.6) 215 (6.69) 601 (11) 19 (0.14) 13189 (35.3) 2701 (6.09) 670 (4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5702 380 741 21 20025 2995 692

UCR 2405 (12) 143 (6.7) 566 (10.2) 19 (0.3) 12755 (40.7) 1024 (13.8) 441 (8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders

UCT 7233 406 788 21 18850 3257 2354

The columns correspond to the seven games named in the header, and the rows correspond to differ-
ent assessments of the four agents. Throughout the table, the numbers in parentheses are standard-
errors. The DQN row reports the average performance (game score) of the DQN agent (a random
action is chosen 5% of the time during testing). The DQN-best row reports the best performance
of the DQN agent over all the attempts at each game. Comparing the performance of the UCT-
toClassification and UCTtoRegression agents (both use 5% exploration), we see that the UCTto-
Classification agent either competes well with or significantly outperforms the UCTtoRegression
agent. More importantly the UCTtoClassification agent outperforms the DQN agent in all games
but Pong (in which both agents do nearly perfectly because the maximum score in this game is 21).
The percentage-performance gain of UCTtoClassification over DQN is quite large for most games.
Similar gains are obtained in the comparison of UCTtoClassification-best to DQN-best.

We used 5% exploration in our agents to match what the DQN agent does, but it is not clear why
one should consider random action selection during testing. In any case, the effect of this ran-
domness in action-selection will differ across games (based, e.g., on whether a wrong action can
be terminal). Thus, we also present results for the UCTtoClassification-greedy agent in which we
don’t do any exploration. As seen by comparing the rows corresponding to UCTtoClassification
and UCTtoClassification-greedy, the latter agent always outperforms the former and in four games
(Breakout, Enduro, Q*Bert, and Seaquest) achieves further large-percentage improvements.

Table 2 gives the performance of our non-realtime UCT agent (again, with 5% exploration). As
discussed above we selected UCT-agent’s parameters to ensure that this agent outperforms the DQN
agent allowing room for our agents to perform in the middle.

Finally, recall that the UCTtoClassification-Interleaved agent was designed so that its input distribu-
tion during training is more likely to match its input distribution during evaluation and we hypothe-
sized that this would improve performance relative to UCTtoClassification. Indeed, in all games but
B. Rider, Pong and S.Invaders in which the two agents perform similarly, UCTtoClassification-
Interleaved significantly outperforms UCTtoClassification. The same holds when comparing
UCTtoClassification-Interleaved-best and UCTtoClassification-best as well as UCTtoClassification-
Interleaved-greedy and UCTtoClassification-greedy.

Overall, the average game performance of our best performing agent (UCTtoClassification-
Interleaved) is significant higher than that of DQN for most games, such as B.Rider (32%), Breakout
(28%), Enduro (28%), Q*Bert (580%), Sequest (58%) and S.Invaders (15%).

In a further preliminary exploration of the effectiveness of the UCTtoClassification-Interleaved
in exploiting additional computational resources for generating UCT runs, on the game Enduro
we compared UCTtoClassification and UCTtoClassification-Interleaved where we allowed each of
them twice the number of UCT runs used in producing the Table 1 above, i.e., 1600 runs while

6

but… 800 games * 1000 actions/game * 10000 rollouts/
action * 300 steps/rollout = 2.4e12 steps

