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(F) = facts that are a bit more technical

1 Markov Decision Process

Infinite-horizon, discounted setting:
• S: state space
• A: action space
• P(s,a,s′): transition kernel
• R(s,a,s′): reward function
• γ∈ [0,1]: discount
• µ: initial state distribution (optional)

2 Backup Operators

At the core of policy and value iteration are the “Bellman backup operators”
T,Tπ, which are mappings R|S|→R|S| that update the value function.

TV (s):=max
a

∑
s′

P(s,a,s′)[R(s,a,s′)+γV (s′)]

TπV (s):=
∑
s′

P(s,π(s),s′)[R(s,π(s),s′)+γV (s′)]

Note that TV (s) means that we are evaluating TV (a vector, in the finite
case) at state s, i.e., it would more properly be written (TV )(s). The
same convention is used when considering TnV (s) and so forth.

Properties of T

• Unique fixed point is V ∗, defined by V ∗(s) = E[R0+γR1+...|s0=s],
where actions are chosen according to an optimal policy: at=π

∗(st).
• nth iterate can be interpreted as the optimal expected
return in n-step finite-horizon problem: TnV (s) =
maxπ0,π1,...,πn−1 E [R0+γR1+···+γn−1Rn−1+γnV (sn)|s0=s], where
at=π(st) ∀t and we are using the shorthand Rt :=R(st,at,st+1), and
the expectation is taken with respect to all states st for t>0.
• (F) T is a contraction under the max norm |·|∞
• T is monotonic, so V ≤ TV ⇒ V ≤ TV ≤ T 2V ≤ ··· ≤ V ∗, and
V ≥TV ⇒V ≥TV ≥T 2V ≥···≥V ∗

Properties of Tπ

• Unique fixed point is V π, defined by V π(s) =E[R0+γR1+...|s0=s],
where actions are chosen according to the policy at=π(st).
• nth iterate can be interpreted as the expected return of a
n-step rollout under π, with terminal cost V : (Tπ)nV (s) =
E[R0+γR1+···+γn−1Rn+γnV (sn)|s0=s] where at=π(st) ∀t.
• (F) Tπ is a contraction under the weighted `2 norm ‖·‖ρ where ρ is

the steady-state distribution of the Markov chain induced by executing
policy π. Tπ is also a contraction under the max norm |·|∞.
• Tπ is monotonic

3 Algorithms

Algorithm 1 Value Iteration

Initialize V (0).
for n=1,2,... do

for s∈S do
V (n)(s)=maxa

∑
s′P(s,a,s

′)(R(s,a,s′)+γV (n−1)(s′))
end for
. The above loop over s could be written as V (n)=TV (n−1)

end for

Properties of value iteration

• If initialized with V (0) = 0 and R(s,a,s′) ≥ 0, values monotonically
increase, i.e., V (0)(s)≤V (1)(s)≤ ...∀s.
• Error V (n)−V ∗ and maximum suboptimality of resulting policy are
bounded by γn|R|∞/(1−γ).

The policy update step could be written in “operator form” as
π(n)=GV π(n−1)

where GV denotes the greedy policy for value function
V , i.e., GV (s)=argmaxa

∑
s′P(s,a,s

′)[R(s,a,s′)+γV (s′)], ∀s∈S.

Properties of policy iteration

• Computes optimal policy and value function in a finite number of
iterations



Algorithm 2 Policy Iteration

Initialize π(0).
for n=1,2,... do

V (n−1)=Solve[V =Tπ
(n−1)

V ]
for s∈S do

π(n)(s)=argmaxa
∑

s′P(s,a,s
′)[R(s,a,s′)+γV (n−1)(s′)]

=argmaxaQ
π(n−1)

(s,a)
end for

end for

• (F) Performance of policy monotonically increases. In fact, at the

nth iteration, the policy improves by (1−γPπ(n))−1(TV (n−1)−V (n−1)),
where Pπ is the matrix defined by Pπ(s,s′)=P(s,π(s),s′),

Algorithm 3 Modified Policy Iteration

Initialize V (0).
for n=1,2,... do

π(s)=GV (n−1)

V (n)=(Tπ)kV (n−1), for integer k≥1
end for

Properties of modified policy iteration

• Computes optimal policy in a finite number of iterations, and value
function converges to optimal one: V (n)→V ∗.
• k=1 gives value iteration, k=∞ limit gives policy iteration (except
at the first iteration.)

4 Value Functions and Bellman Equations

The term “value function” in general refers to a function that returns the
expected sum of future rewards. However, there are several different types
of value function. A “state-value function” function V (s) is a function
of state, whereas a “state-action-value function” Q(s,a) is a function of
a state-action pair.

Below, we list the most common value functions with a pair of equations:
the first one involving an infinite sum of rewards, the second one providing

a self-consistency equation (a “Bellman equation”) with a unique solution.
All of the expectations are taken with respect to all states st for t>0

V π(s)=E[R0+γR1+...|s0=s], where at=π(st) ∀t

V π(s)=
∑
s′

P(s,π(s),s′)[R(s,π(s),s′)+γV π(s′)]

Qπ(s,a)=E[R0+γR1+...|s0=s,a0=a], where at=π(st) ∀t

Qπ(s,a)=
∑
s′

P(s,a,s′)[R(s,a,s′)+γQπ(s′,π(s′))]

V ∗(s)=E[R0+γR1+...|s0=s] where at=π∗(st) ∀t

V ∗(s)=max
a

∑
s′

P(s,a,s′)[R(s,a,s′)+γV ∗(s′)]

Q∗(s,a)=E[R0+γR1+...|s0=s,a0=a], where at=π(st) ∀t

Q∗(s,a)=
∑
s′

P(s,a,s′)[R(s,a,s′)+γmax
a′
Q∗(s′,a′)]

5 Some Definitions

Contraction: a function f is a contraction under
norm |·| with modulus γ iff |f(x)−f(y)|≤γ|x−y|. By the Banach fixed
point theorem, a contraction mapping on Rd has a unique fixed point.

Stationary Distribution: Given a
transition matrix Pss′, the stationary distribution ρ is the left eigenvector,
satisfying ρs′=ρsPss′. If the transition matrix satisfies appropriate
conditions (see the Markov chain theory [3]), then ρ=limn→∞νP

k

for any initial distribution ν. In the context of MDPs, we speak speak
of the transition matrix induced by policy π, defined by Pss′=P (s,π(s),s

′),
and similarly, there is a stationary distribution induced by the policy ρπ.

Monotonic: a function f is monotonic if x≤y =⇒ f(x)≤f(y).
This definition can be extended to the case that f :Rd→Rd, in
which case the inequalities hold for each component on the LHS and RHS.
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