What is Reinforcement Learning?

» Branch of machine learning concerned with taking
sequences of actions

» Usually described in terms of agent interacting with a
previously unknown environment, trying to maximize
cumulative reward

action

Agent Environment

"

observation, reward

» Formalized as partially observable Markov decision
process (POMDP)



Motor Control and Robotics

Robotics:
» Observations: camera images, joint angles
» Actions: joint torques

» Rewards: stay balanced, navigate to target locations,
serve and protect humans



Business Operations

Inventory Management
» Observations: current inventory levels
» Actions: number of units of each item to purchase

» Rewards: profit



In Other ML Problems

» Classification with Hard Attention?

» Observation: current image window
» Action: where to look
» Reward: +1 for correct classification
» Sequential /structured prediction, e.g., machine
translation?
» Observations: words in source language
» Action: emit word in target language
» Reward: sentence-level accuracy metric, e.g. BLEU score

Ly, Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. “Recurrent models of visual attention”. N/PS. 2014,

2H. Daumé 111, J. Langford, and D. Marcu. “Search-based structured prediction”. (2009); S. Ross,
G. J. Gordon, and D. Bagnell. “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online
Learning.” AISTATS. 2011; M. Norouzi, S. Bengio, N. Jaitly, M. Schuster, Y. Wu, et al. “Reward augmented
maximum likelihood for neural structured prediction”. N/PS. 2016.



What Is Deep Reinforcement Learning?

Reinforcement learning using neural networks to approximate
functions
» Policies (select next action)
» Value functions (measure goodness of states or
state-action pairs)
» Dynamics Models (predict next states and rewards)



How Does RL Relate to Other ML Problems?

Supervised learning:
» Environment samples input-output pair (x¢, y;) ~ p
» Agent predicts y; = f(x;)
» Agent receives loss ((y:, J:)

» Environment asks agent a question, and then tells it the
right answer



How Does RL Relate to Other ML Problems?

Contextual bandits:
» Environment samples input x; ~ p
» Agent takes action y; = f(x;)

» Agent receives cost ¢; ~ P(c; | xt, ¥:) where P is an
unknown probability distribution

» Environment asks agent a question, and gives agent a
noisy score on its answer

» Application: personalized recommendations



How Does RL Relate to Other ML Problems?

Reinforcement learning:
» Environment samples input x; ~ P(x; | x¢—1, Yt—1)
» Environment is stateful: input depends on your previous
actions!

» Agent takes action y; = f(x;)

» Agent receives cost ¢; ~ P(c; | xt, V) where P a
probability distribution unknown to the agent.



How Does RL Relate to Other Machine Learning
Problems?

Summary of differences between RL and supervised learning:

» You don't have full access to the function you're trying to
optimize—must query it through interaction.

» Interacting with a stateful world: input x; depend on your
previous actions



1990s, beginnings

Neural Networks
for Control

fon,and Paul J. Werbos

Fig. 21. Direct adaptive control of nonlinear plants using neural networks.

K. S. Narendra and K. Parthasarathy. “ldentification and control of dynamical systems using neural networks”.
IEEE Transactions on neural networks (1990) W. T. Miller, P. J. Werbos, and R. S. Sutton. Neural networks for
control. 1991



1990s, beginnings

“This dissetaton demonstrates how we can possibly overcome th slow Ieaming problem
and tackle making learning more practical for

realistic robot tasks:

* Reinforcement leaming can be naturally integrated with artificial neural networks to
obtain high-quality generalization, resulting in a significant leaning speedup. Neural

of noise and a large number of binary and real-valued inputs.

© Reinforcement learning agents can save many leaming trials by using an action model,
which can be learned on-line. With a model, an agent can mentally experience the effects
of ts actions without actually executing them. Experience replay is a simple technique
that implements this idea, and is shown 10 be effective in reducing the number of action
‘executions required.

« Reinforcement learning agents can take advantage of instructive training instances pro-
vided by human teachers, esuling i  ignificant esming spedup. Teaching cansso
for opti . Simulation

1 t of teachi many leamning

trals.

« Reinforcement learing agents can significantly reduce learning time by hierarchical
learning— they first solve elementary learning problems and then combine solutions to
the elementary problems to Solve a complex problem. Simulation experiments indicate
that a robot with hierarchical learning can solve a complex problem, which otherwise is
hardly solvable within a reasonable time.

* Reinforcement leaming agents can deal with a wide range of non-Markovian environ-
their past.
work reasonably well for a variety o simple problems. One of them is also successfully
applied to a nontrivial non-Markovian robot task.

L.-J. Lin. Reinforcement learning for robots using neural networks. Tech. rep. DTIG Docurment, 1993



1990s, beginnings
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‘Table 11.1: Summary of TD-Gammon Results

Program | Hidden [ Training || Opponents Resalts
Units | Games

T-Gam00| 40 | 300000 || otber programs i forbest

[TD-Gam 10| 80| 300000 | Robertie, Magiel . [~ 13pis/ 51 games.

[1D-Gam 20| 40| 800000 |various Grandmasters [ 7 pes /38 games

TGam21| 80 150000  Robertic Lt/ 40 games

1Gam 30| 80 1500000 Kazaros +Gpes 20 games

G. Tesauro. “Temporal difference learning and TD-Gammon”. Communications of the ACM (1995). Figures
from R. S. Sutton and A. G. Barto. Introduction to reinforcement learning. MIT Press;1998



Recent Success Stories in Deep RL

» ATARI using deep Q-learning®, policy gradients?,
DAGGER®

3v. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, |. Antonoglou, et al. “Playing Atari with Deep Reinforcement
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V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, et al. “Asynchronous methods for deep reinforcement
learning”. (2016).
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Recent Success Stories in Deep RL

» Robotic manipulation using guided policy search®

New Approach Trains Robots to Match Human Dexterity and Speed

» Robotic locomotion using policy gradients’

65, Levine, C. Finn, T. Darrell, and P. Abbeel. “End-to-end training of deep visuomotor policies”. (2015).

7J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. “High-dimensional continuous control using
generalized advantage estimation”. (2015).



Recent Success Stories in Deep RL

» AlphaGo: supervised learning + policy gradients + value
functions + Monte-Carlo tree search®

8D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, et al. “Mastering the game of Go with deep neural
networks and tree search”. Nature (2016).



