Supervised Learning of Behaviors: Deep Learning, Dynamical Systems, and Behavior Cloning

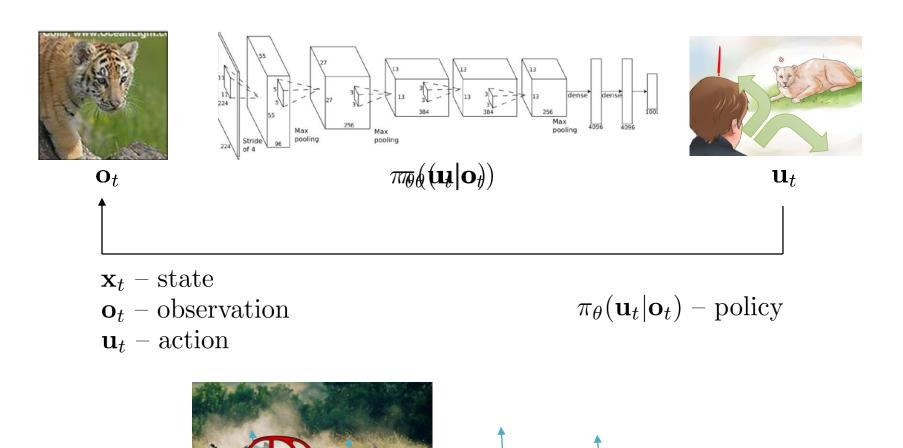
CS 294-112: Deep Reinforcement Learning

Week 2, Lecture 1

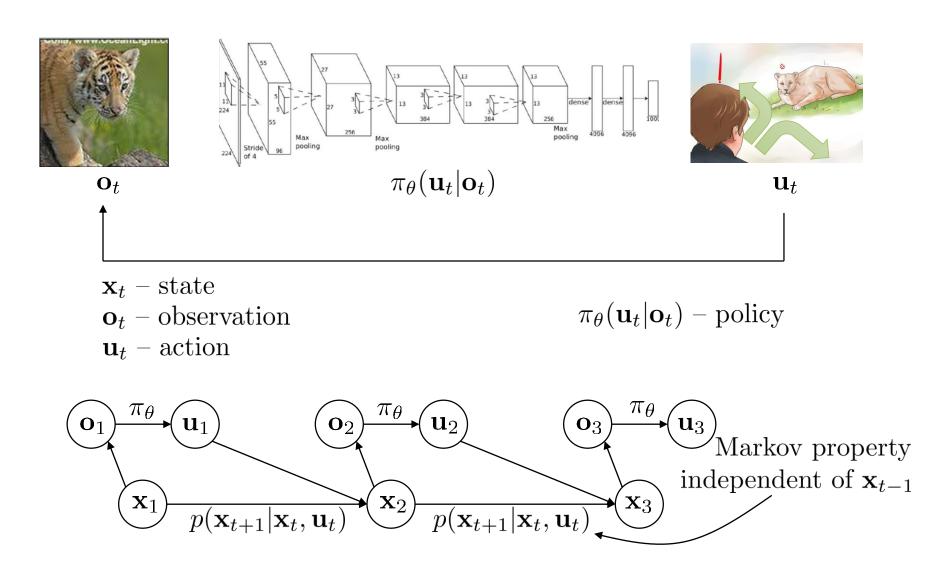
Sergey Levine

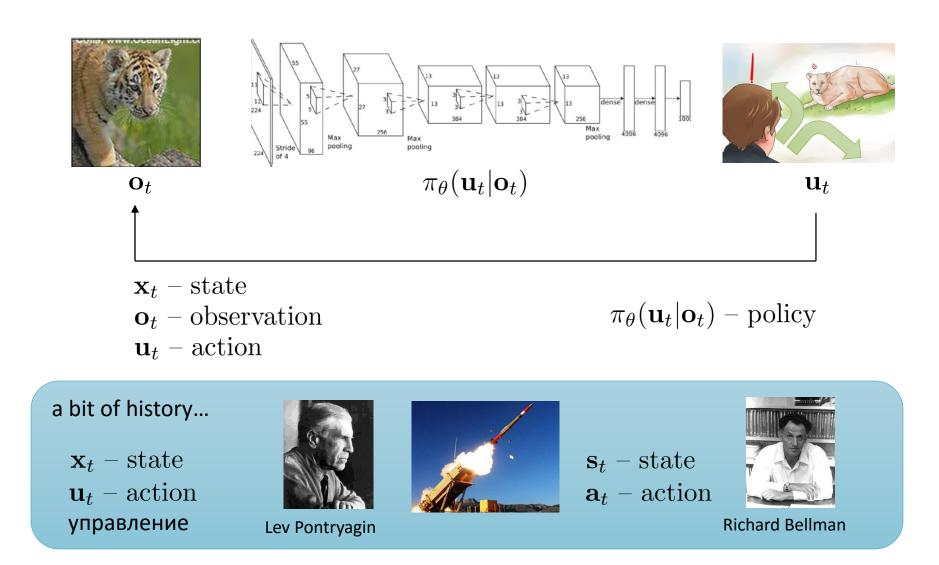
Today's Lecture

- 1. Definition of sequential decision problems
- 2. Imitation learning: supervised learning for decision making
 - a. Does direct imitation work?
 - b. How can we make it work more often?
- 3. Case studies of recent work in (deep) imitation learning
- 4. What is missing from imitation learning?
- Goals:
 - Understand definitions & notation
 - Understand basic imitation learning algorithms
 - Understand their strengths & weaknesses

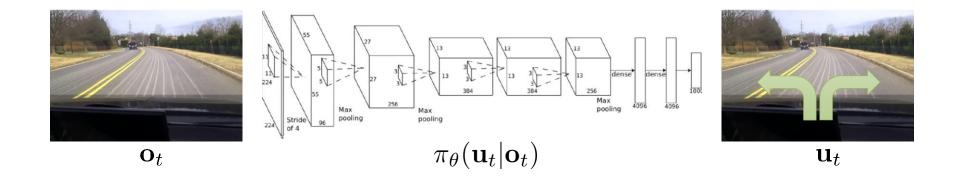


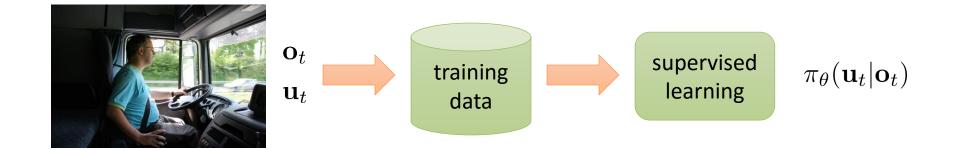
 \mathbf{x}_t – state



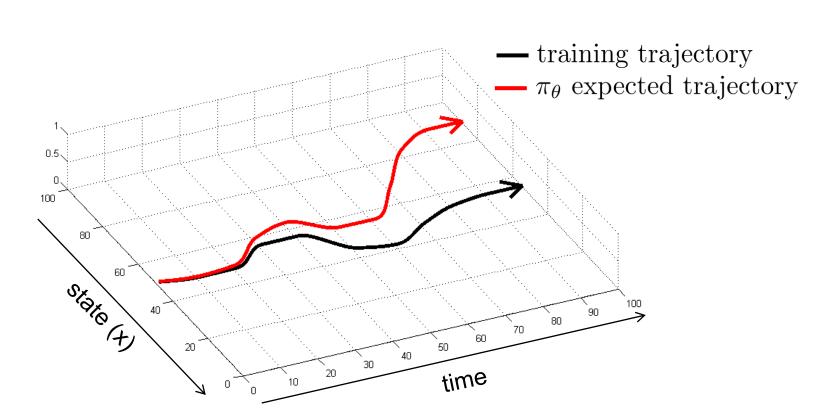


Imitation Learning



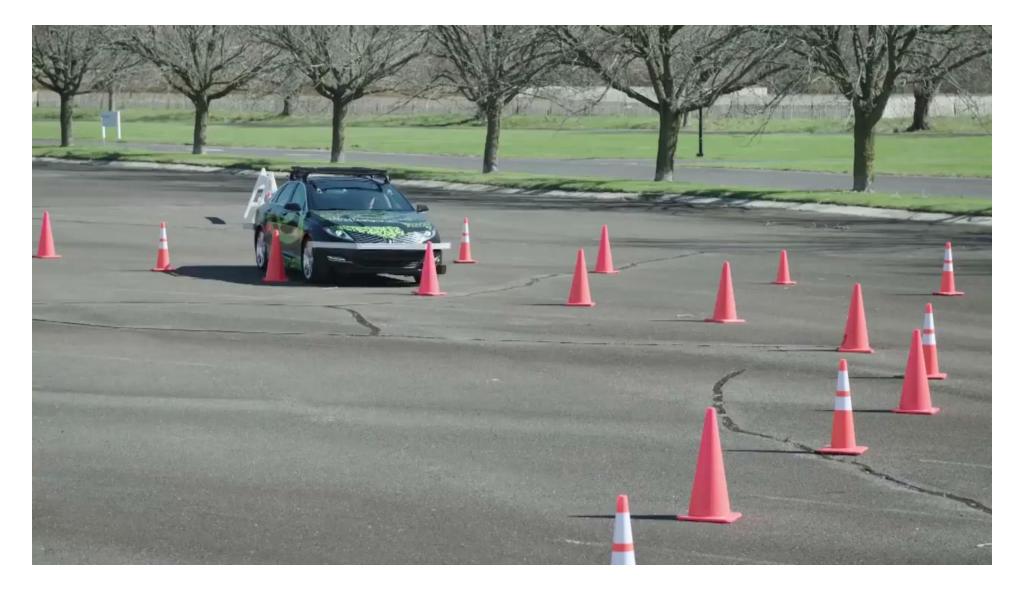


Does it work?

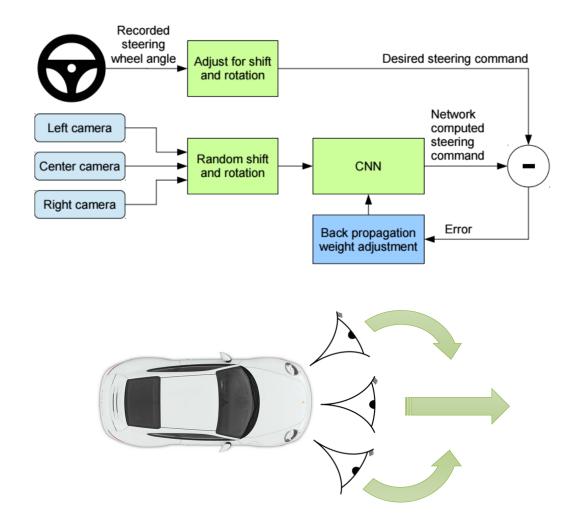


No!

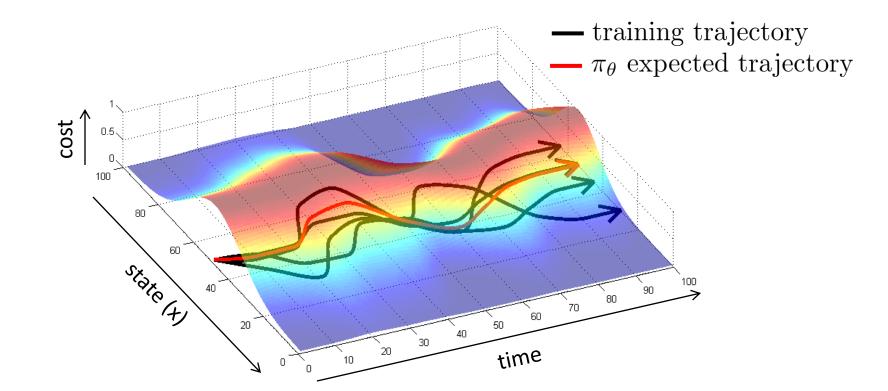
Does it work? Yes!



Why did that work?

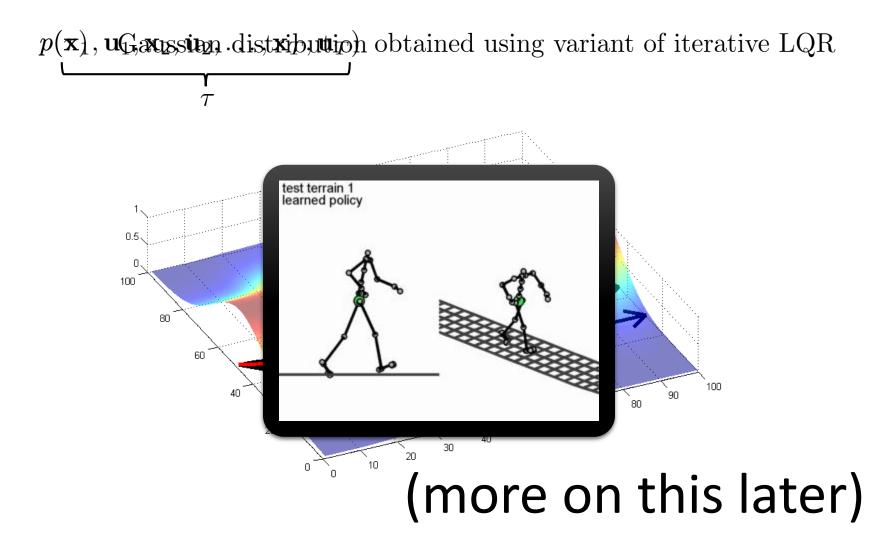


Can we make it work more often?

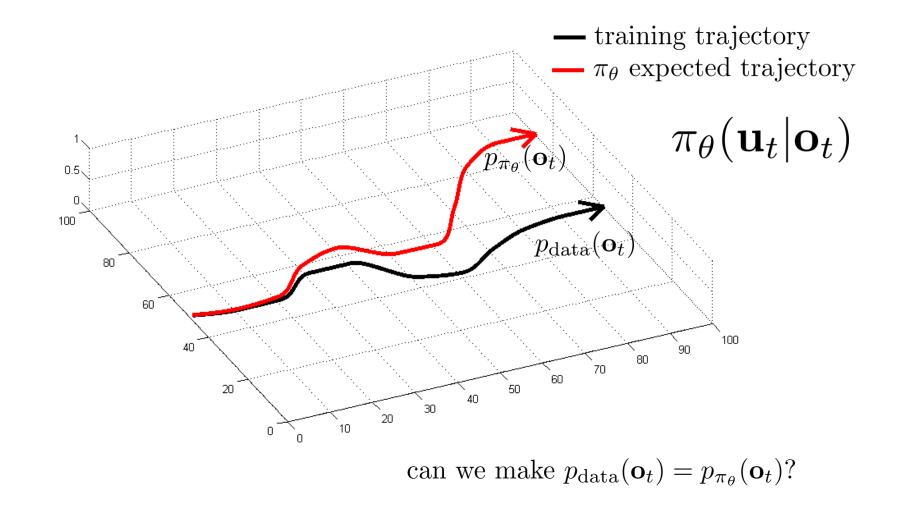


stability

Learning from a stabilizing controller



Can we make it work more often?



Can we make it work more often?

can we make $p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)$?

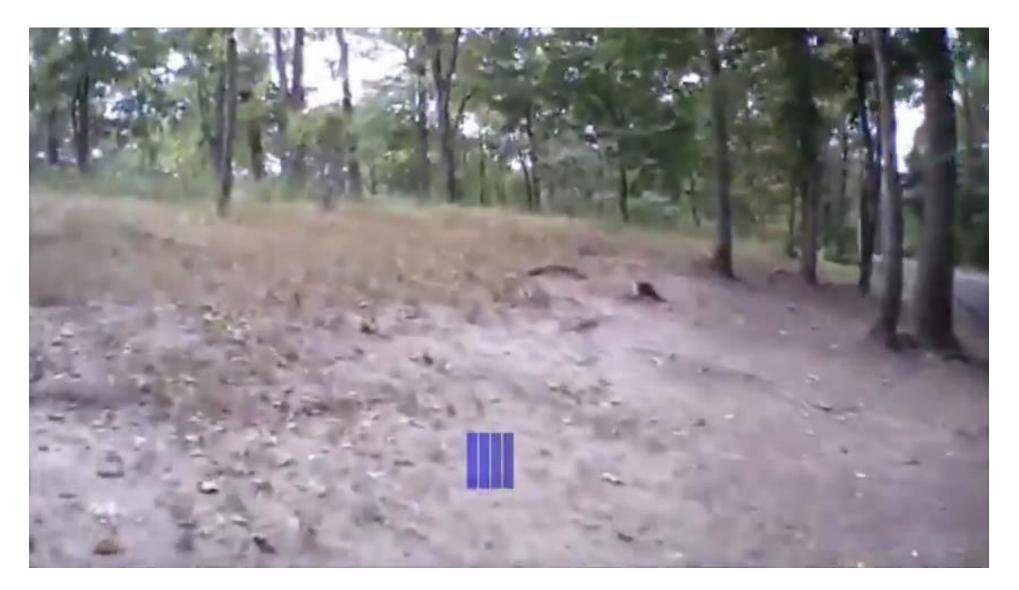
idea: instead of being clever about $p_{\pi_{\theta}}(\mathbf{o}_t)$, be clever about $p_{\text{data}}(\mathbf{o}_t)$!

DAgger: Dataset Aggregation

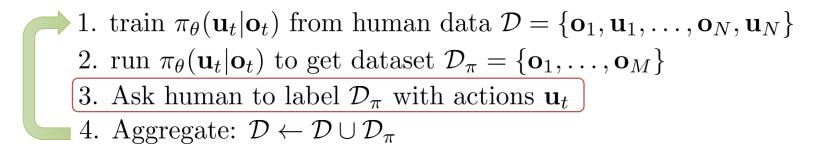
goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ but need labels \mathbf{u}_t !

1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$ 2. run $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example

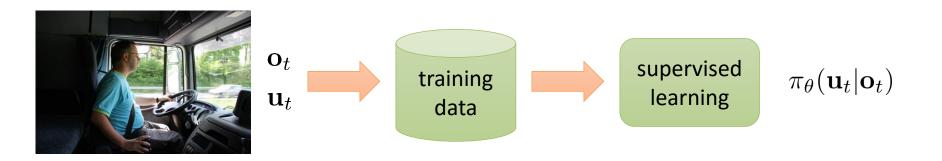


What's the problem?

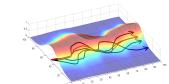


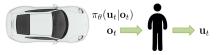
$$(\mathbf{u}_t | \mathbf{o}_t) \quad \mathbf{o}_t \quad \mathbf{v}_t \quad \mathbf{u}_t$$

Imitation learning: recap



- Often (but not always) insufficient by itself
 - Distribution mismatch problem
- Sometimes works well
 - Hacks (e.g. left/right images)
 - Samples from a stable trajectory distribution
 - Add more **on-policy** data, e.g. using DAgger

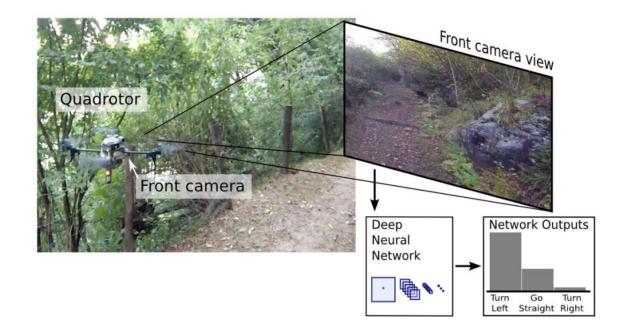




Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots

Alessandro Giusti¹, Jérôme Guzzi¹, Dan C. Cireşan¹, Fang-Lin He¹, Juan P. Rodríguez¹ Flavio Fontana², Matthias Faessler², Christian Forster² Jürgen Schmidhuber¹, Gianni Di Caro¹, Davide Scaramuzza², Luca M. Gambardella¹

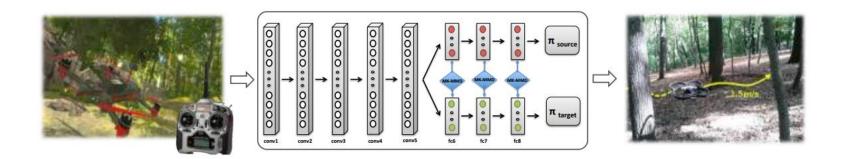


Case study 2: DAgger & domain adaptation

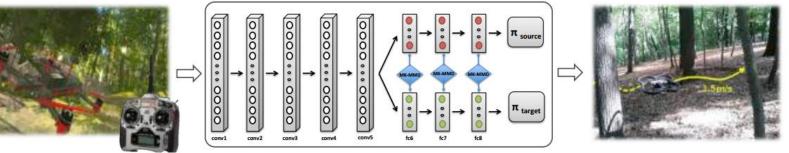
Learning Transferable Policies for Monocular Reactive MAV Control

Shreyansh Daftry, J. Andrew Bagnell, and Martial Hebert

Robotics Institute, Carnegie Mellon University, Pittsburgh, USA {daftry,dbagnell,hebert}@ri.cmu.edu



1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$ 2. run $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$



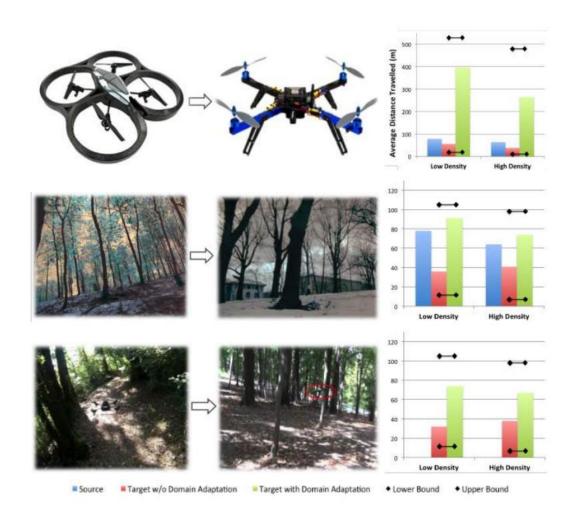
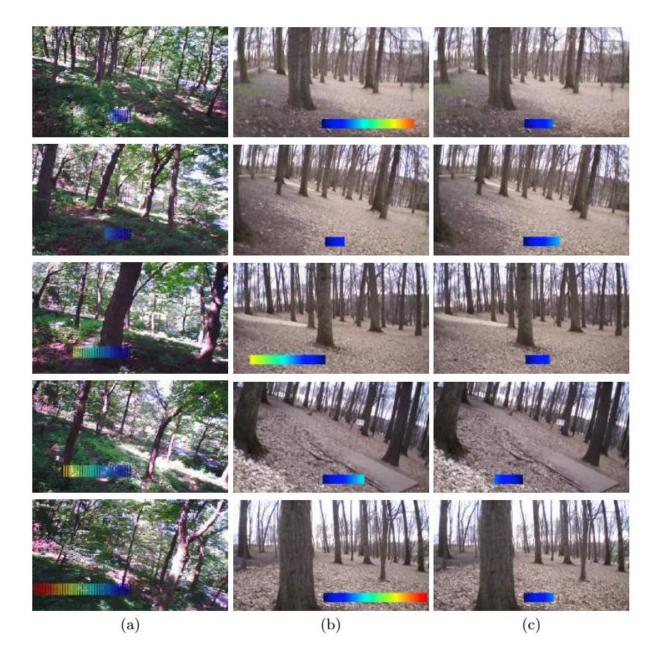


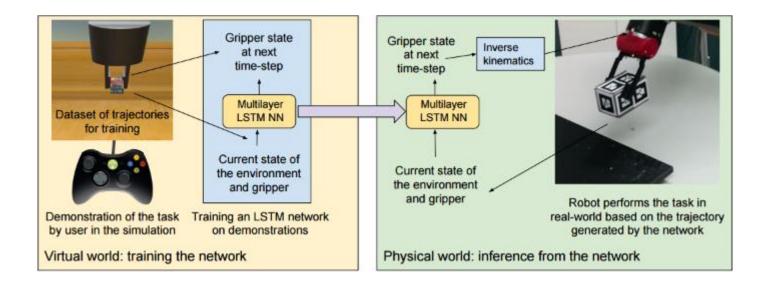
Fig. 2. Experiments and Results for (Row-1) Transfer across physical systems from ARDrone to ArduCopter, (Row-2) Transfer across weather conditions from summer to winter and (Row-3) Transfer across environments from Univ. of Zurich to CMU.



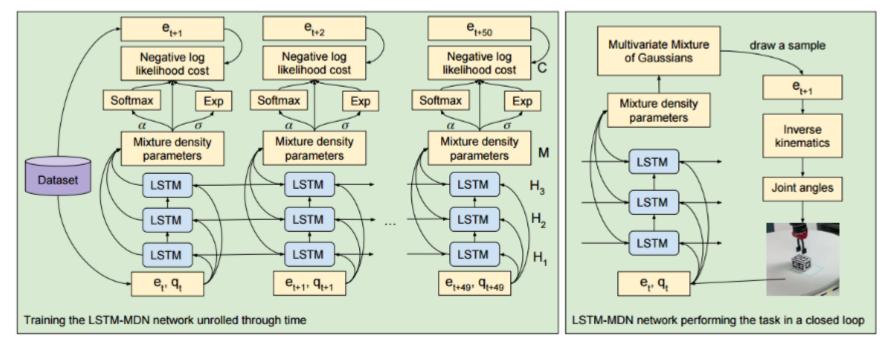
Case study 3: Imitation with LSTMs

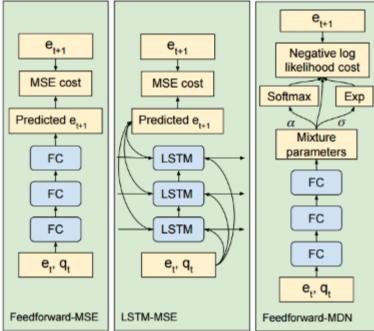
Learning real manipulation tasks from virtual demonstrations using LSTM

Rouhollah Rahmatizadeh¹, Pooya Abolghasemi¹, Aman Behal² and Ladislau Bölöni¹



Learning Manipulation Trajectories Using Recurrent Neural Networks



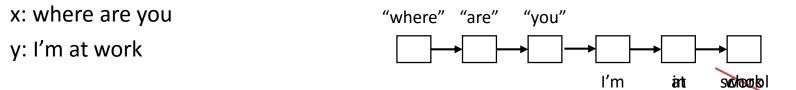


Controller	Pick and place	Push to pose
Feedfoward-MSE	0%	0%
LSTM-MSE	85%	0%
Feedforward-MDN	95%	15%
LSTM-MDN	100%	95%

Environment	Pick and place	Push to pose
Virtual world	100%	95%
Physical world	80%	60%

Other topics in imitation learning

• Structured prediction



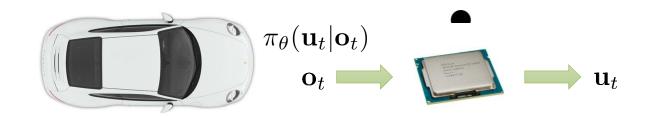
- See Mohammad Norouzi's lecture in April!
- Interaction & active learning
- Inverse reinforcement learning
 - Instead of copying the demonstration, figure out the goal
 - Will be covered later in this course

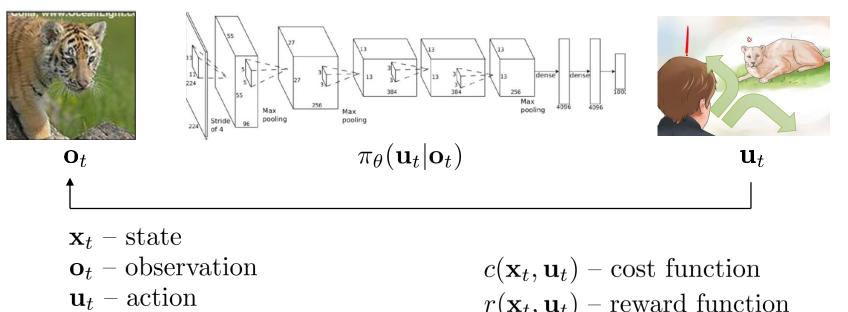
Imitation learning: what's the problem?

- Humans need to provide data, which is typically finite
 - Deep learning works best when data is plentiful
- Humans are not good at providing some kinds of actions

- Unlimited data from own experience
- Continuous self-improvement

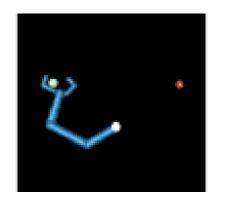
Next time: learning without humans

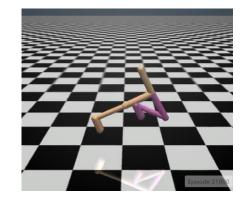




$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} \frac{\int_{T}^{T} p (\mathbf{x}_t, \mathbf{u}_t) \operatorname{by.ttige}_T |\mathbf{u}_1 f(\mathbf{x}_t, \mathbf{u}_T)_{t-1})$$

Cost/reward functions in theory and practice





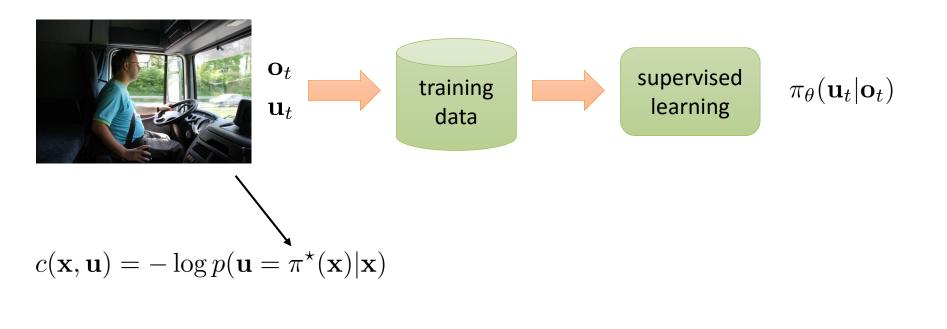
 $r(\mathbf{x}, \mathbf{u}) = \begin{cases} 1 \text{ if object at target} \\ 0 \text{ otherwise} \end{cases}$

$$r(\mathbf{x}, \mathbf{u}) = \begin{cases} 1 \text{ if walker is running} \\ 0 \text{ otherwise} \end{cases}$$

$$r(\mathbf{x}, \mathbf{u}) = -w_1 \| p_{\text{gripper}}(\mathbf{x}) - p_{\text{object}}(\mathbf{x}) \|^2 + -w_2 \| p_{\text{object}}(\mathbf{x}) - p_{\text{target}}(\mathbf{x}) \|^2 + -w_3 \| \mathbf{u} \|^2$$

$$r(\mathbf{x}, \mathbf{u}) = w_1 v(\mathbf{x}) + w_2 \delta(|\theta_{\text{torso}}(\mathbf{x})| < \epsilon) + w_3 \delta(h_{\text{torso}}(\mathbf{x}) \ge h)$$

A cost function for imitation?



1. train
$$\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$$
 from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
2. run $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t
4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

The trouble with cost & reward functions

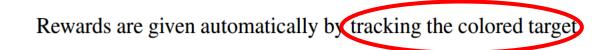
reward

Mnih et al. '15 reinforcement learning agent

what is the reward?

Andrei A. Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, Raia Hadsell

Google DeepMind London, UK {andreirusu, matejvecerik, tcr, heess, razp, raia}@google.com



More on this later...

A note about terminology...

the "R" word

a bit of history...

reinforcement learning (the **problem** statement)

$$\min \sum_{t=1}^{T} E[c(\mathbf{x}_t, \mathbf{u}_t)] \qquad \mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t)$$

reinforcement learning (the **method**)

without using the model $\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t)$

Lev Pontryagin

Richard Bellman

Andrew Barto Richar

Richard Sutton