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Course logistics



Class Information & Resources

Sergey Levine Abhishek Gupta Josh Achiam
Assistant Professor PhD Student PhD Student
UC Berkeley UC Berkeley UC Berkeley

* Course website: rll.berkeley.edu/deepricourse/
* Piazza: UC Berkeley, CS294-112

e Subreddit (for non-enrolled students):
www.reddit.com/r/berkeleydeepricourse/

e Office hours: after class each day (but not today), sign up in advance
for a 10-minute slot on the course website



http://rll.berkeley.edu/deeprlcourse/
http://www.reddit.com/r/berkeleydeeprlcourse/

Prerequisites & Enrollment

e All enrolled students must have taken CS189, CS289, or CS281A
* Please contact Sergey Levine if you haven’t

* Please enroll for 3 units
e Students on the wait list will be notified as slots open up

* Lectures will be recorded
* Since the class is full, please watch the lectures online if you are not enrolled



What you should know

* Assignments will require training neural networks with standard
automatic differentiation packages (TensorFlow by default)

 Review Section
e Josh Achiam will teach a review section in week 3

* You should be able to at least do the TensorFlow MNIST tutorial (if not, come
to the review section and ask questions!)



What we’ll cover

* Full syllabus on course website

1.
2.
3.

From supervised learning to decision making
Basic reinforcement learning: Q-learning and policy gradients

Advanced model learning and prediction, distillation, reward
learning

Advanced deep RL: trust region policy gradients, actor-critic
methods, exploration

Open problems, research talks, invited lectures



Assignments

Homework 1: Imitation learning (control via supervised learning)
Homework 2: Policy gradients (“REINFORCE”)
Homework 3: Q learning with convolutional neural networks

Homework 4: Model-based reinforcement learning

Al S

Final project: Research-level project of your choice (form a group of
up to 2-3 students, you’re welcome to start early!)

Grading: 40% homework (10% each), 60% project



Your “Homework” Today

1. Sign up for Piazza (see course website)

2. Start forming your final project groups, unless you want to work
alone, which is fine

3. Fill out the enrolled student survey if you haven’t already!

Check out the TensorFlow MNIST tutorial, unless you're a
TensorFlow pro



What is reinforcement learning, and why
should we care?



What is reinforcement learning?

l decisions (actions)

consequences
observations
rewards




Examples

Actions: muscle contractions
Observations: sight, smell
Rewards: food

Actions: motor current or torque
Observations: camera images

Actions: what to purchase

Observations: inventory levels
Rewards: task success measure Rewards: profit

(e.g., running speed)



What is deep RL, and why should we care?

Deep learning: end-to-end training of
expressive, multi-layer models

Deep models are what allow reinforcement
learning algorithms to solve complex problems
end to end!



What does end-to-end learning mean for
sequential decision making?
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Example: robotics
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Example: playing video games
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The reinforcement learning problem

decisions (actions) Actions: motor current or torque
Observations: camera |mages
/ Rewards: tack ciiccess measiire (e o riinnino sneed)

Deep models are what allow remforcement
learning algorithms to solve complex problems
end to end!

Observations: words in English

ol B -
K / Rewards: BLEU score

consequences
observations The reinforcement learning problem is the Al problem!
rewards




When do we not need to worry about
sequential decision making?

When your system is making single isolated decision, e.g. classification, regression
When that decision does not affect future decisions

' EXITCY




When should we worry about sequential
decision making?

Limited supervision: you know what you want, but not how to get it
Actions have consequences

Common Applications
autonomous driving business operations

language & dialogue R
robotics (structured prediction) finance



Why should we study this now?
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1. Advances in deep learning

2. Advances in reinforcement learning

3. Advances in computational capability



Why should we study this now?
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L.-J. Lin, “Reinforcement learning for robots using neural networks.” 1993



Why should we study this now?

Atari games: Real-world robots:

Q-learning: Guided policy search:

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. S. Levine*, C. Finn*, T. Darrell, P. Abbeel. “End-to-end
Antonoglou, et al. “Playing Atari with Deep training of deep visuomotor policies”. (2015).
Reinforcement Learning”. (2013). Q-learning:

Policy gradients: S. Gu*, E. Holly*, T. Lillicrap, S. Levine. “Deep

J. Schulman, S. Levine, P. Moritz, M. |. Jordan, and P. Reinforcement Learning for Robotic Manipulation
Abbeel. “Trust Region Policy Optimization”. (2015). with Asynchronous Off-Policy Updates”. (2016).

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
et al. “Asynchronous methods for deep reinforcement
learning”. (2016).

LEE SEDOL
00:01:00

Beating Go champions:
Supervised learning + policy
gradients + value functions +
Monte Carlo tree search:

D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, et al. “Mastering the game of Go

with deep neural networks and tree
search”. Nature (2016).



What other problems do we need to solve to
enable real-world sequential decision making?



Beyond learning from reward

* Basic reinforcement learning deals with maximizing rewards

* This is not the only problem that matters for sequential decision
making!

* We will cover more advanced topics

* Learning reward functions from example (inverse reinforcement learning)
* Transferring skills between domains
e Learning to predict and using prediction to act



Where do rewards come from?

reward

loo= 41 Gershral saria

W Basal ganglia
(movement, reward)

M Thalamus
(sensory gateway)

M Hippocampus

Forebrain (memory)

Hypothalamus
(regulates body
function)

Amygdala
Mnih et al.’15 (emotion)

reinforcement learning agent

[-] LazyOptimist 32 points 5 days ago
As human agents, we are accustomed to operating with
rewards that are so sparse that we only experience them
once or twice in a lifetime, if at all.




Are there other forms of supervision?

* Learning from demonstrations
* Directly copying observed behavior
* Inferring rewards from observed behavior (inverse reinforcement learning)

* Learning from observing the world
* Learning to predict
* Unsupervised learning

* Learning from other tasks
* Transfer learning
* Meta-learning: learning to learn



Imitation learning

Bojarski et al. 2016



More than imitation: inferring intentions

Warneken & Tomasello



Inverse RL examples

Demo 1 (of20).

Finn et al. 2016



Prediction

“the idea that we predict the consequences of our motor
commands has emerged as an important theoretical
concept in all aspects of sensorimotor control”

Prediction Precedes Control in Motor Learning

J. Randall Flanagan,"* Philipp Vetter, Procedures for detaile). Figure 1 shows, for a sEngle
Roland 5. Johamsson,” and Danisl M. Wolpert! subiject, the hand path {fop trace) and the grg (middie)

Predicting the Consequences of Our Own Actions: The Role of
Sensorimotor Context Estimation

Sarah J. Blakemore, Susan J. Goodbody, and Danisl M. Waolpert
Sabal Dapartment of Neurophysiology, instiiule of Newralogy, Linhars®y Collage London, Landan WCTN 3806,

Predictive coding in the visual cortex:
a functional interpretation of some
extra-classical receptive-field effects

Rajesh P N, Rao' and Dana H. Ballard®



What can we do with a perfect model?

Mordatch et al. 2015



Prediction for real-world control

\ :'

original
video

predictions

Finn et al. 2017



How do we build intelligent machines?



How do we build intelligent machines?

* Imagine you have to build an intelligent machine, where do you start?

Anatomy and Functional Areas of the Brain

Functional Areas of Soeabont cona
the Cerebral Cortex

Somatosensory Assoclation Area
Evalicalion of wighs, exm
lomperature, g, for oBject Fecogtion

s Area
Wrtters 87 3p0kan IATGUAGH Comosehoss0n

Functional Areas of
the Cerebellum

Motor Functions
CGooedraton of movemert
Balance and equilbrum
Postuin




Learning as the basis of intelligence

* Some things we can all do (e.g. walking)
e Some things we can only learn (e.g. driving a car)
* We can learn a huge variety of things, including very difficult things

* Therefore our learning mechanism(s) are likely powerful enough to do
everything we associate with intelligence

e But it may still be very convenient to “hard-code” a few really important bits



A single algorithm?

* An algorithm for each “module”?
* Or a single flexible algorithm?

Human echolocation (sonar)

[BrainPort; Martinez et al; Roe et al.]
adapted from A. Ng



What must that single algorithm do?

* Interpret rich sensory inputs \M\ 9 (
)

* Choose complex actions




Why deep reinforcement learning?

* Deep = can process complex sensory input
= ...and also compute really complex functions

* Reinforcement learning = can choose complex actions



Some evidence in favor of deep learning

Unsupervised learning models of primary cortical
receptive fields and receptive field plasticity

Andrew Saxe, Maneesh Bhand, Ritvik Mudur, Bipin Suresh, Andrew Y. Ng
Department of Computer Science
Stanford University
{asaxe, mbhand, rmudur, bipins, ang}@cs.stanford.edu
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Some evidence for reinforcement learning

* Percepts that anticipate reward
become associated with similar
firing patterns as the reward
itself

e Basal ganglia appears to be
related to reward system

* Model-free RL-like adaptation is
often a good fit for experimental
data of animal adaptation

* But not always...

Reinforcement learning in the brain

Yael Niv

Psychology Department & Princeton Neuroscience Institute, Princeton University



What can deep learning & RL do well now?

* Acquire high degree of proficiency in
domains governed by simple, known
rules

e Learn simple skills with raw sensory
inputs, given enough experience

* Learn from imitating enough human-
provided expert behavior




What has proven challenging so far?

* Humans can learn incredibly quickly
* Deep RL methods are usually slow

* Humans can reuse past knowledge
* Transfer learning in deep RL is an open problem

* Not clear what the reward function should be
* Not clear what the role of prediction should be



Instead of trying to produce a
program to simulate the adult
mind, why not rather try to
produce one which simulates the
child's? If this were then subjected
to an appropriate course of
education one would obtain the
adult brain.

- Alan Turing

general learning
algorithm

environment




