Supervised Learning of Behaviors

CS 294-112: Deep Reinforcement Learning

Sergey Levine

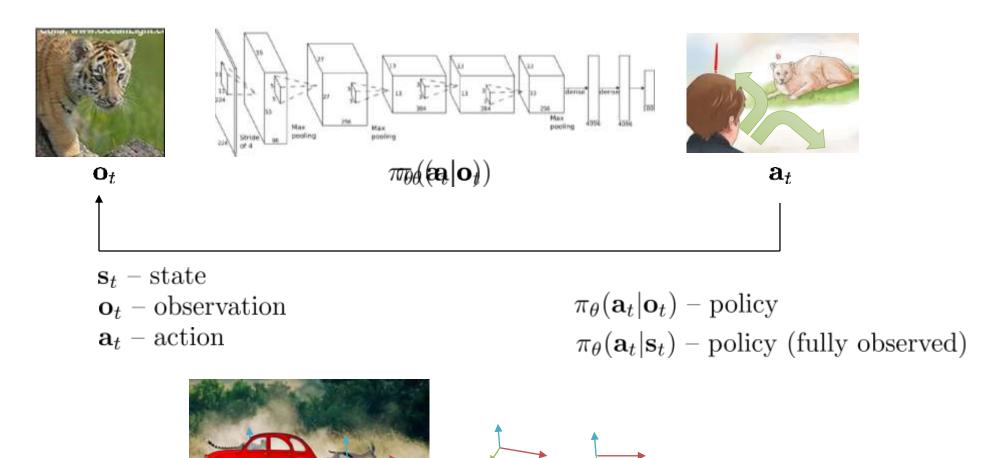
Class Notes

- 1. Make sure you sign up for Piazza!
- 2. Homework 1 is now out
 - Milestone due soon good way to check your TensorFlow knowledge
- 3. Remember to start forming final project groups
- 4. Waitlist

Today's Lecture

- 1. Definition of sequential decision problems
- 2. Imitation learning: supervised learning for decision making
 - a. Does direct imitation work?
 - b. How can we make it work more often?
- 3. Case studies of recent work in (deep) imitation learning
- 4. What is missing from imitation learning?
- Goals:
 - Understand definitions & notation
 - Understand basic imitation learning algorithms
 - Understand their strengths & weaknesses

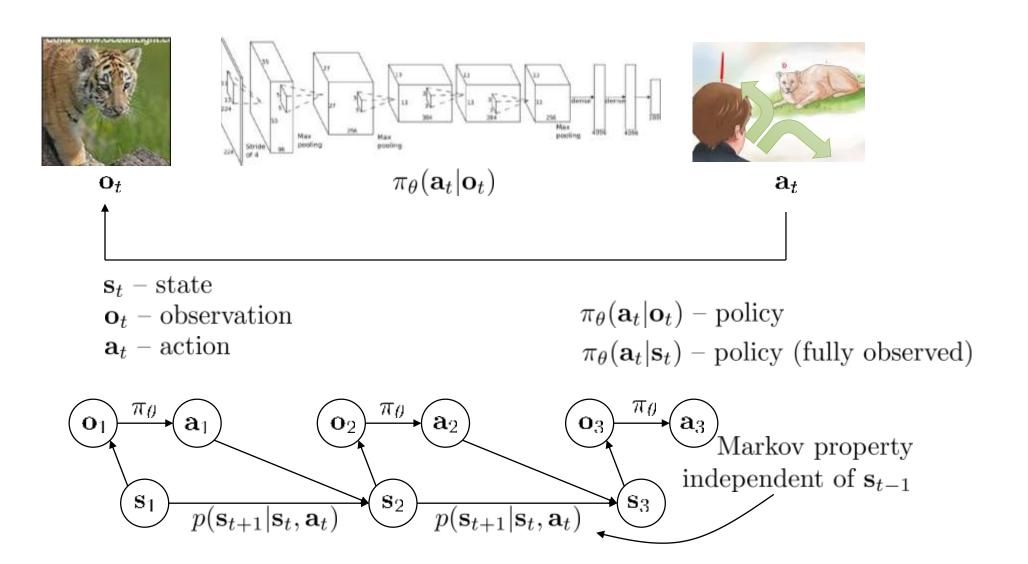
Terminology & notation



 \mathbf{o}_t – observation

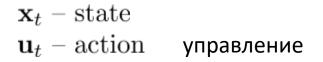
 \mathbf{s}_t – state

Terminology & notation

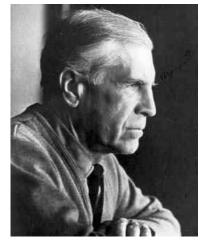


Aside: notation

 $\mathbf{s}_t - ext{state}$ $\mathbf{a}_t - ext{action}$

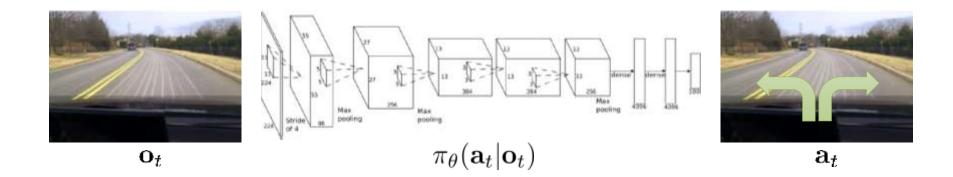


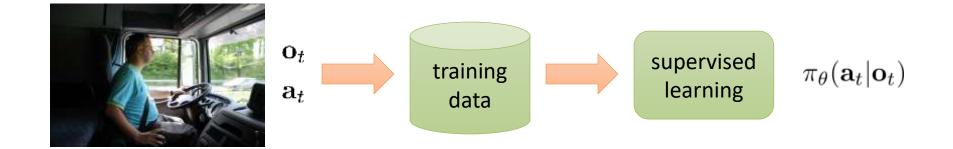
Richard Bellman



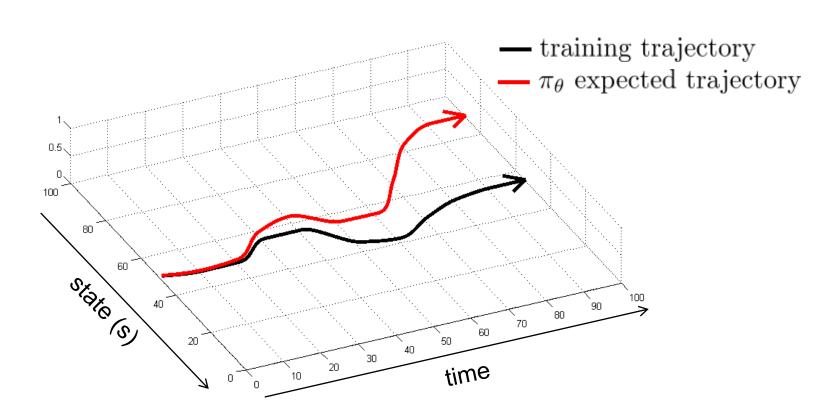
Lev Pontryagin

Imitation Learning



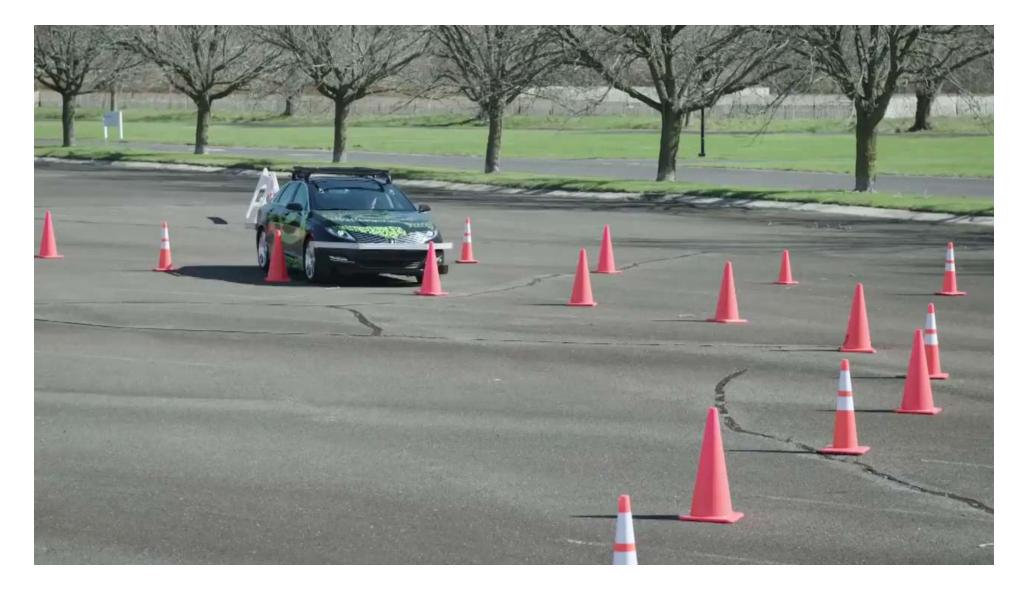


Does it work?

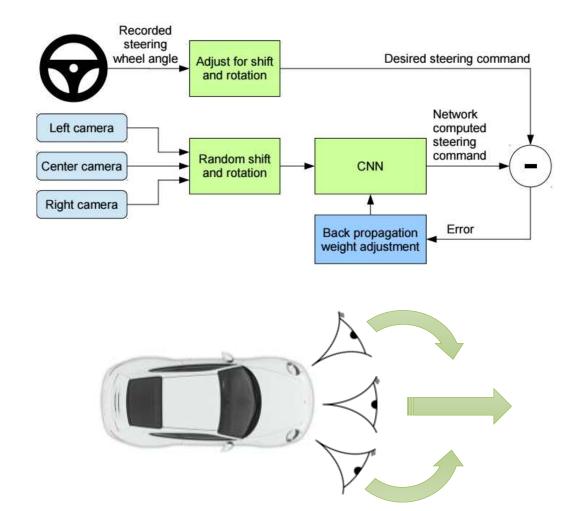


No!

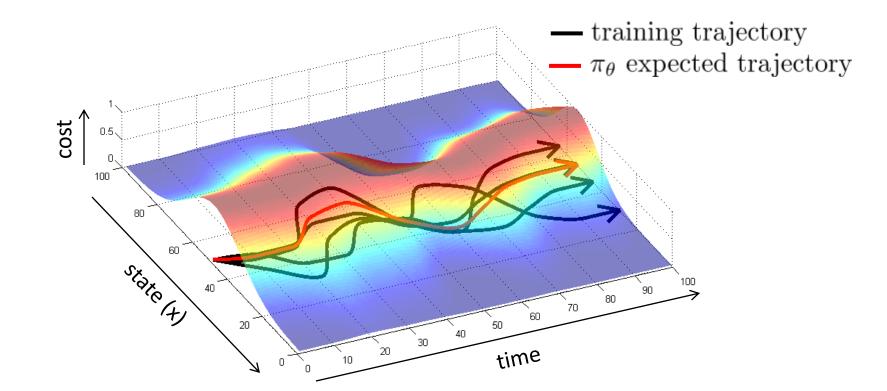
Does it work? Yes!



Why did that work?

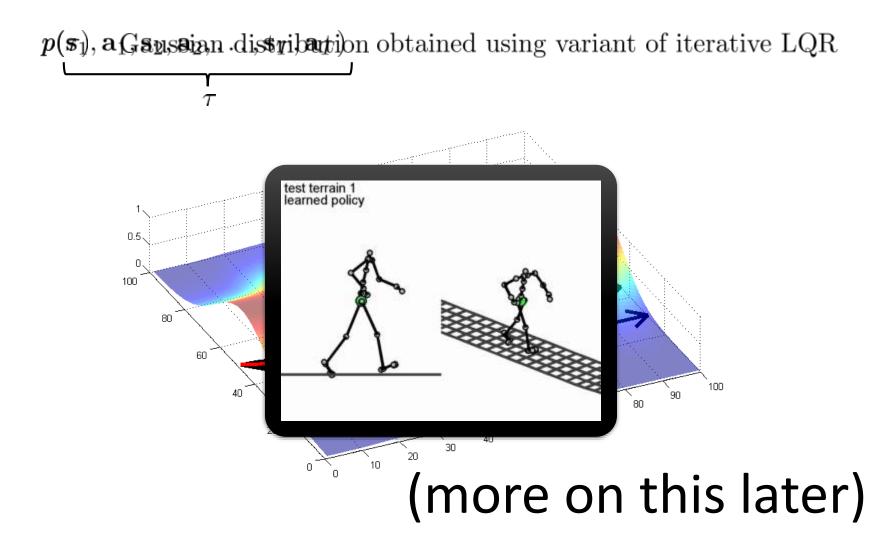


Can we make it work more often?

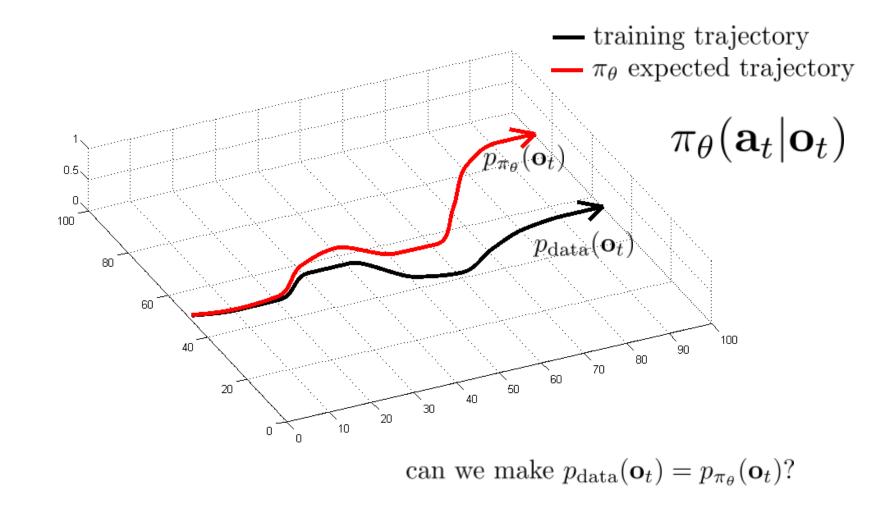


stability

Learning from a stabilizing controller



Can we make it work more often?



Can we make it work more often?

can we make $p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)$?

idea: instead of being clever about $p_{\pi_{\theta}}(\mathbf{o}_t)$, be clever about $p_{\text{data}}(\mathbf{o}_t)$!

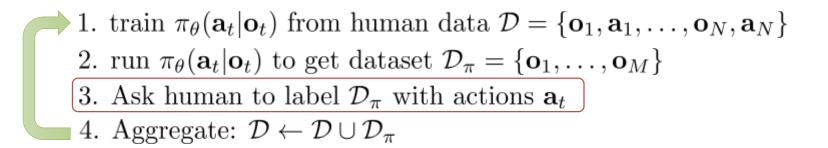
DAgger: Dataset Aggregation

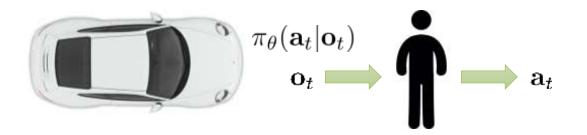
goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ but need labels \mathbf{a}_t !

1. train $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example

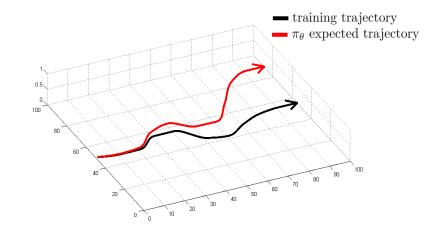
What's the problem?





Can we make it work without more data?

- DAgger addresses the problem of distributional "drift"
- What if our model is so good that it doesn't drift?
- Need to mimic expert behavior very accurately
- But don't overfit!



- 1. Non-Markovian behavior
- 2. Multimodal behavior

 $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$

behavior depends only on current observation

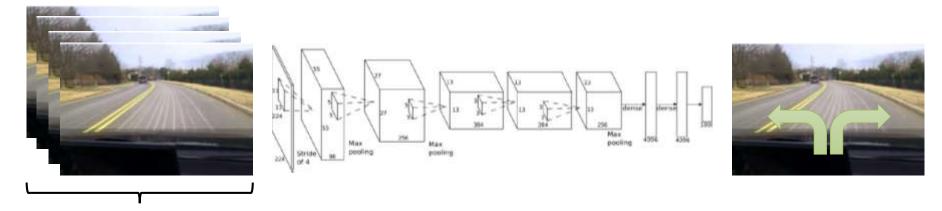
 $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_1, ..., \mathbf{o}_t)$

behavior depends on all past observations

If we see the same thing twice, we do the same thing twice, regardless of what happened before

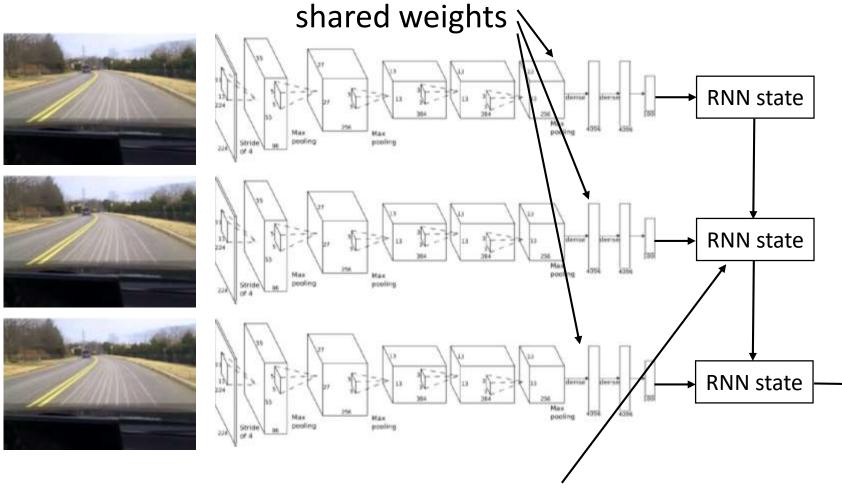
Often very unnatural for human demonstrators

How can we use the whole history?



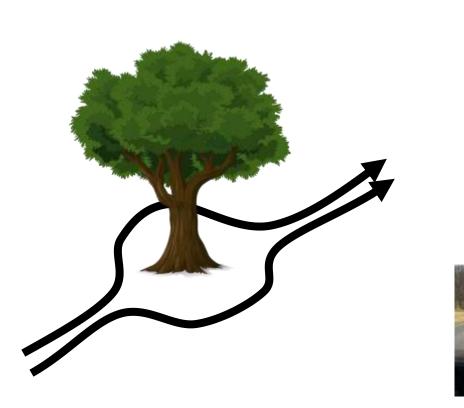
variable number of frames, too many weights

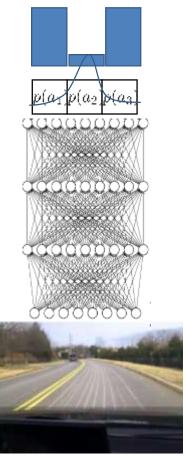
How can we use the whole history?



Typically, LSTM cells work better here

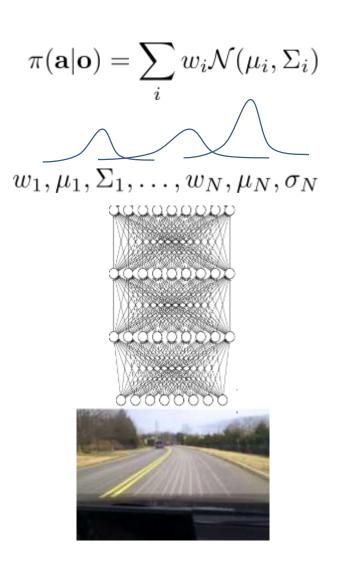
- 1. Non-Markovian behavior
- 2. Multimodal behavior



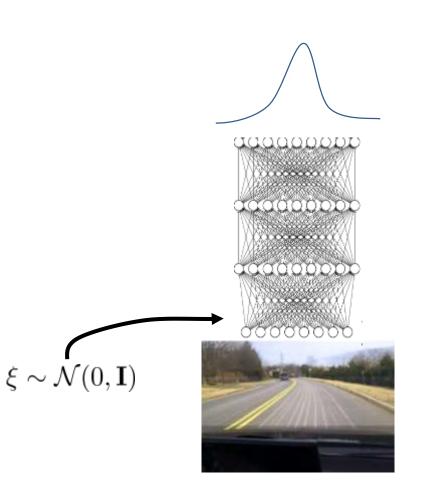


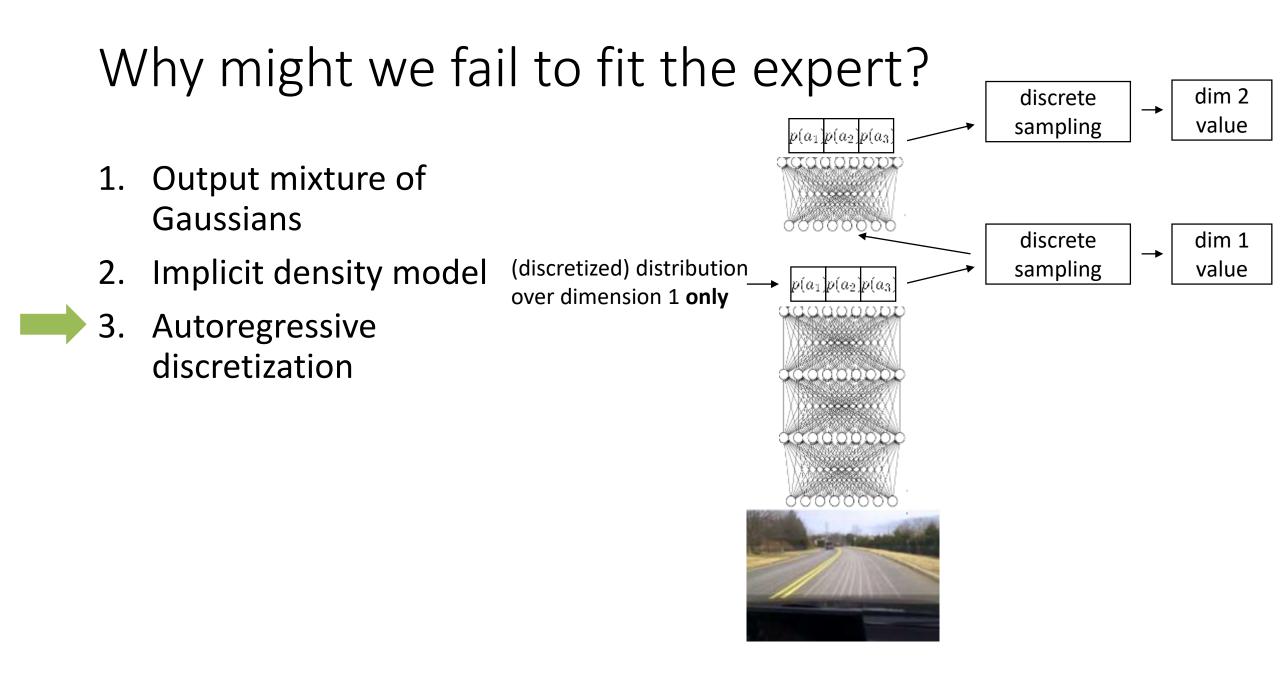
- 1. Output mixture of Gaussians
- 2. Implicit density model
- 3. Autoregressive discretization

- Output mixture of Gaussians
- 2. Implicit density model
- 3. Autoregressive discretization



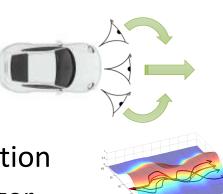
- 1. Output mixture of Gaussians
- 2. Implicit density model
- 3. Autoregressive discretization

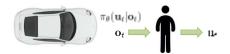




Imitation learning: recap

- Often (but not always) insufficient by itself
 - Distribution mismatch problem
- Sometimes works well
 - Hacks (e.g. left/right images)
 - Samples from a stable trajectory distribution
 - Add more **on-policy** data, e.g. using Dagger
 - Better models that fit more accurately

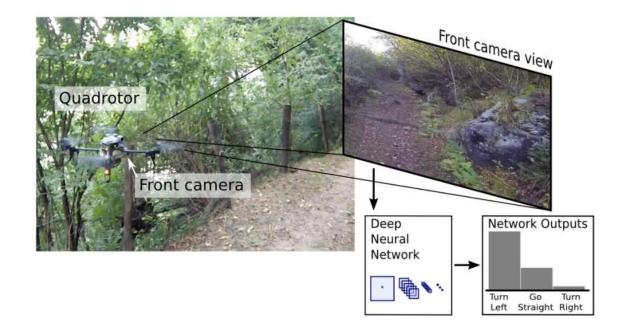




Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots

Alessandro Giusti¹, Jérôme Guzzi¹, Dan C. Cireşan¹, Fang-Lin He¹, Juan P. Rodríguez¹ Flavio Fontana², Matthias Faessler², Christian Forster² Jürgen Schmidhuber¹, Gianni Di Caro¹, Davide Scaramuzza², Luca M. Gambardella¹

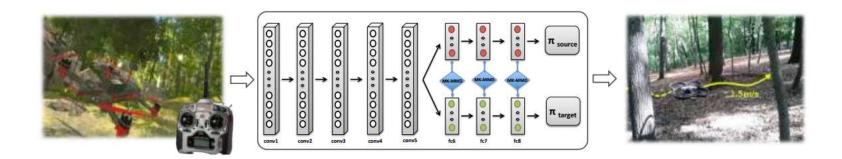


Case study 2: DAgger & domain adaptation

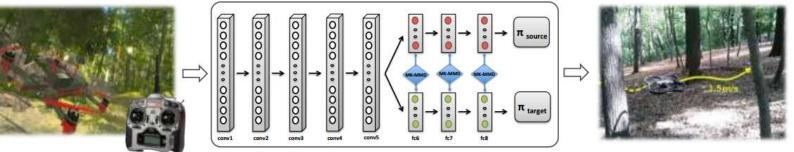
Learning Transferable Policies for Monocular Reactive MAV Control

Shreyansh Daftry, J. Andrew Bagnell, and Martial Hebert

Robotics Institute, Carnegie Mellon University, Pittsburgh, USA {daftry,dbagnell,hebert}@ri.cmu.edu



1. train $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$



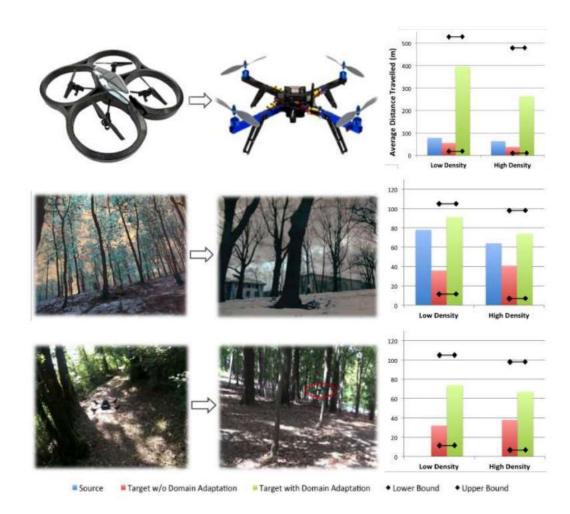


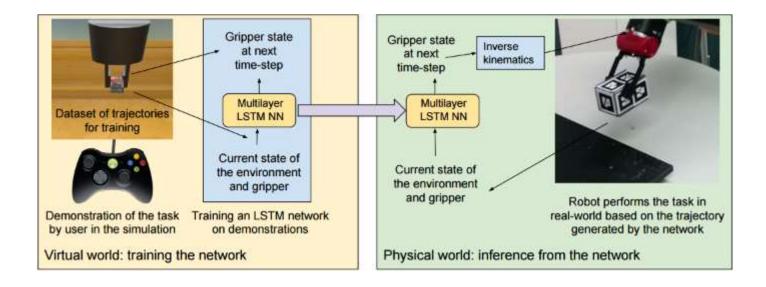
Fig. 2. Experiments and Results for (Row-1) Transfer across physical systems from ARDrone to ArduCopter, (Row-2) Transfer across weather conditions from summer to winter and (Row-3) Transfer across environments from Univ. of Zurich to CMU.



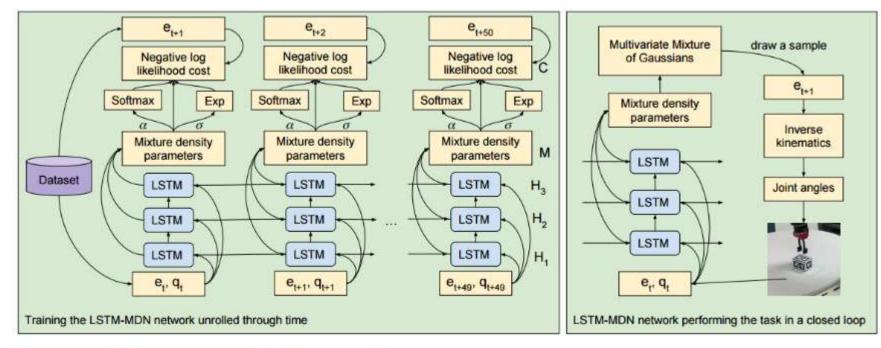
Case study 3: Imitation with LSTMs

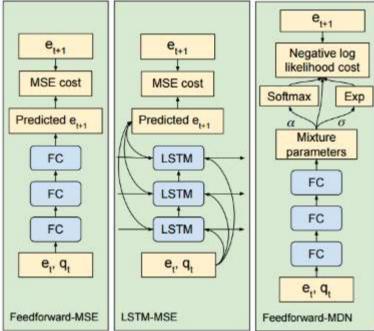
Learning real manipulation tasks from virtual demonstrations using LSTM

Rouhollah Rahmatizadeh¹, Pooya Abolghasemi¹, Aman Behal² and Ladislau Bölöni¹



Learning Manipulation Trajectories Using Recurrent Neural Networks



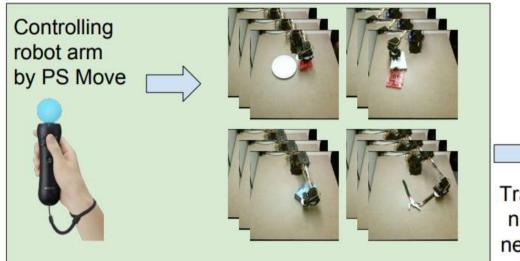


Controller	Pick and place	Push to pose
Feedfoward-MSE	0%	0%
LSTM-MSE	85%	0%
Feedforward-MDN	95%	15%
LSTM-MDN	100%	95%

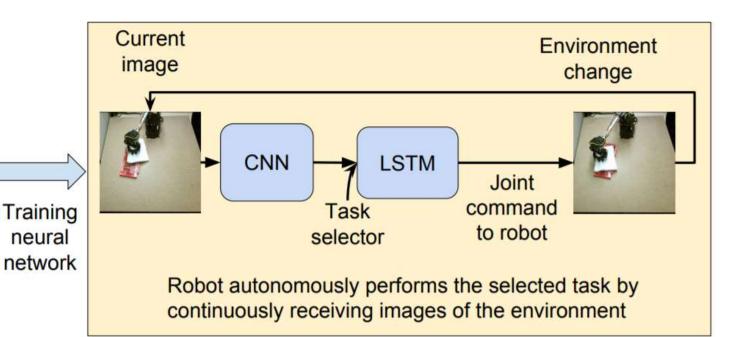
Environment	Pick and place	Push to pose
Virtual world	100%	95%
Physical world	80%	60%

Follow-up: adding vision

Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-To-End Learning from Demonstration



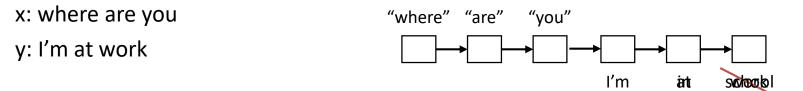
Demonstrating multiple tasks while recording: 1) Sequence of images, 2) Robot joint commands



First we demonstrate different tasks to the robot using Leap Motion or PlayStation Move

Other topics in imitation learning

• Structured prediction



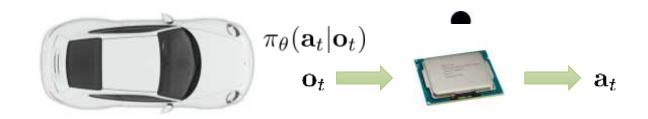
- See Mohammad Norouzi's lecture in November!
- Interaction & active learning
- Inverse reinforcement learning
 - Instead of copying the demonstration, figure out the goal
 - Will be covered later in this course

Imitation learning: what's the problem?

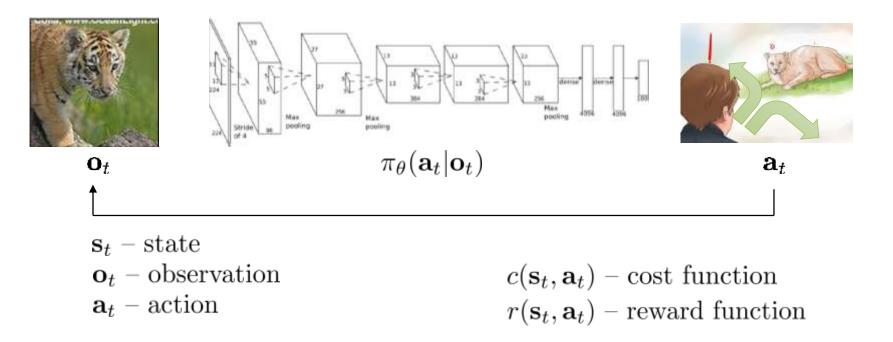
- Humans need to provide data, which is typically finite
 - Deep learning works best when data is plentiful
- Humans are not good at providing some kinds of actions

- Humans can learn autonomously; can our machines do the same?
 - Unlimited data from own experience
 - Continuous self-improvement

Next time: learning without humans



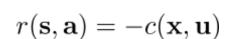
Terminology & notation

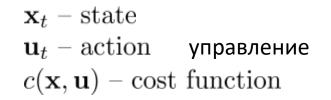


$$\min_{\mathbf{a}_1,\ldots,\mathbf{a}_T} \frac{\sum_{t=1}^T p(\mathbf{s}_t, \mathbf{a}_t) \text{byttiger} + \mathbf{a}_f(\mathbf{s}_{t-1}, \mathbf{a}_t, \mathbf{a}_{t-1})$$

Aside: notation

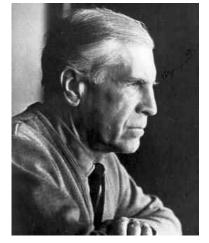
 \mathbf{s}_t – state \mathbf{a}_t – action $r(\mathbf{s}, \mathbf{a})$ – reward function





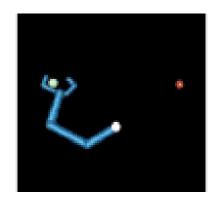
Richard Bellman

$$r(\mathbf{s}, \mathbf{a}) = -c(\mathbf{x}, \mathbf{u})$$



Lev Pontryagin

Cost/reward functions in theory and practice



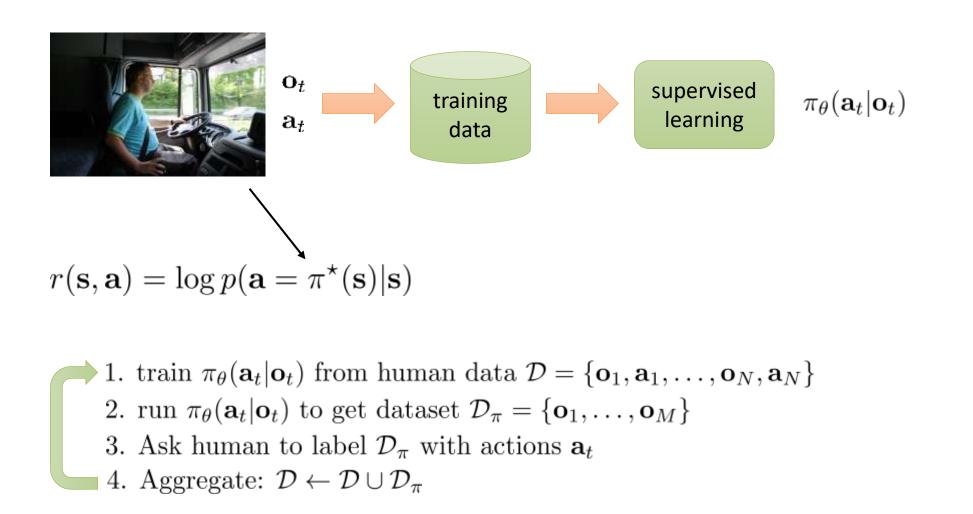
 $r(\mathbf{s}, \mathbf{a}) = \begin{cases} 1 \text{ if object at target} \\ 0 \text{ otherwise} \end{cases}$

$$r(\mathbf{s}, \mathbf{a}) = -w_1 \| p_{\text{gripper}}(\mathbf{s}) - p_{\text{object}}(\mathbf{s}) \|^2 + \\ -w_2 \| p_{\text{object}}(\mathbf{s}) - p_{\text{target}}(\mathbf{s}) \|^2 + \\ -w_3 \| \mathbf{a} \|^2$$

$$r(\mathbf{s}, \mathbf{a}) = \begin{cases} 1 \text{ if walker is running} \\ 0 \text{ otherwise} \end{cases}$$

$$r(\mathbf{s}, \mathbf{a}) = w_1 v(\mathbf{s}) + w_2 \delta(|\theta_{\text{torso}}(\mathbf{s})| < \epsilon) + w_3 \delta(h_{\text{torso}}(\mathbf{s}) \ge h)$$

A cost function for imitation?



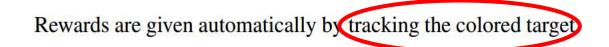
The trouble with cost & reward functions

Mnih et al. '15 reinforcement learning agent

what is the reward?

Andrei A. Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, Raia Hadsell

Google DeepMind London, UK {andreirusu, matejvecerik, tcr, heess, razp, raia}@google.com



More on this later...

A note about terminology...

m

the "R" word

a bit of history...

reinforcement learning (the **problem** statement)

$$\max \sum_{t=1}^{T} E[r(\mathbf{s}_t, \mathbf{a}_t)] \qquad \mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

reinforcement learning (the **method**)

without using the **model**

 $\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$

Lev Pontryagin

Richard Bellman

Andrew Barto

Richard Sutton