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Advanced Topics in Imitation & Safety

1. Imitating humans: handling domain shift
2. Safety while learning

3. Improving imitation learning from experts

Note: This is an open area of research.
[Next time, there will be more theory.]
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Imitation learning beyond drones and cars

Q: How do you provide demonstrations for an robotic
arm or humanoid?
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Ty

2
r"‘
-4

Muelling et al. ‘13



Teleoperation

Towards Associative Skill Memories

Peter Pastor, Mrinal Kalakrishnan,
Ludovic Righetti, Stefan Schaal

Pastor et al. ‘12



Zoe McCarthy ‘16



Imitation learning beyond drones and cars

Q: How do you provide demonstrations for an robotic
arm or humanoid?

A: Most popularly:

- kinesthetic teaching
- teleoperation

This lecture: beyond kinesthetic teaching & teleoperation



Why is domain shift a problem?

* Humans can do things that robots can’t do
(and vice versa)
* Humans look different than robots

With expressive function approximation, domain shift becomes more of an issue.
[With linear functions, we will just underfit.]



Last time: models with images

Predict Poke{

Limitation: can’t plan with inverse model




Case Study: Imitating
Intermediate Goals

Combining Self-Supervised Learning and Imitation for Vision-Based
Rope Manipulation

Ashvin Nair™ Dian Chen* Pulkit Agrawal®
Phillip Isola Pieter Abbeel Jitendra Malik Sergey Levine

Robot execution




Imitation of high-level goals

(a) Greedy Planner

I Action Predictor |
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Goal Image

Can we get high-level subgoals from humans?
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- Observation: Human is removed from scene. (not always a full solution)

- More importantly, human provides high-level goals

Another reference: Modular Multi-task Reinforcement Learning with Policy Sketches, Andreas et al “16



Limitations

* Inverse model may ignore important parts of
the image

— Only needs to model enough to determine the
action

* Requires images of goal for each step
— May be hard to obtain for some tasks (language?)



Case Study: Multimodal Imitation

Robobarista: Object Part based Transfer of
Manipulation Trajectories from Crowd-sourcing
in 3D Pointclouds

Jaeyong Sung, Seok Hyun Jin, and Ashutosh Saxena




Input: Object parts in point-cloud

Goal: »
convert |
text instruction |+
point cloud [ ——
into robot

trajectory

Output: Trajectory for parts Transferred Trajectories:

urinal flush valve soda dispenser restroom sink

i
DemOnStratlon automated helper texts o008

manual
Robobarisia > | Buk | Rave some dea of how 1 marpulate (hat part of The obpect Please show me how you image you hand and
o how my hand s moverg

! - manual title
prepare a grind for the
‘espresso machine.

‘Step 1: Rotate the knob clockwise to

I n t e rfa C e : camera move control

camera zoom control

point-cloud
current manual step to
i pectle 1 demonstrate
CAD model (green/movable): i 3: Pull the handle left to
object part being interacted §]Felease grind into the holder. iterate/play all

demonstrations
e submit button

CAD model (red/static):
object part not being interacted

2 g

simulated PR2 gripper
interpolated waypoint (waypoint being edited)

waypoint being edited position/rotation control
reset current demonstration ghosted full demonstration
play current demonstration

- <«——= edit bar legend
. . ° .
trajectory edit bar #=——s © gripper status

add/remove Waypoint #e————p o (yellow: “open”, blue: “close”)




How to train the model?

“policy” model:

Instruction:

“Hold the cup of espresso below the
hot water nozzle.” “Push down on
the handle to add hot water.” ...

* Non-unique output

* Policy must learn to output good, detailed trajectories
— Not as hard as generating realistic images
— But still hard - lots of precision required!



How to train the model?

* (Can assign good score to multiple
trajectories

 Search for trajectories (e.g.
nearest neighbor queries)

— Trajectories are object-relative, so
nearest neighbor is OK

‘““critic” model:

Instruction:
“Hold the cup of espresso below the

hot water nozzle.” “Push down on #

the handle to add hot water.” ...




How to train? N

 [000] [OOO
Pretrain each encoder as v [OO0] [0O0] (OO0
1 1 1
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ASSign a Score to eaCh point cloud (p) language (1) trajectory (7)
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— Trajectory that is the most similar ¢ L -=ra

to other trajectories is e '~
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v

‘e
v best example

— Inner 50% are “good” s 1 YO -'
— OQOuter 50% are ‘“bad” N, p9s't'vfs J
« (score=1)~
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Limitations

* Requires object-centric trajectories

— Assumes nearest-neighbor queries are a reasonable way
to get trajectories

— Must have pre-segmented object parts (e.g. handles)
* Requires large number of demonstrations (1225)

— Enough to determine positives and negatives

— Multiple demonstrations per object and per text
command

Can we combine with RL to require fewer demonstrations?



Case Study: Object-Centric
Demonstrations

Learning Dexterous Manipulation for a Soft Robotic Hand from
Human Demonstrations

Abhishek Gupta! Clemens Eppner? Sergey Levine! Pieter Abbeel!
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RBO Hand 2
* Soft, Cheap, Compliant

* Inflate/deflate chambers using pneumatic actuators.

* 7 DoF —1o0n each finger, 3 on thumb, w/ pressure sensors for
each chamber

Slide from Abhishek Gupta



Challenges w/ RBO Hand 2

* Cannot use traditional control methods:
— Poor position and pressure sensing
— Noisy actuation

* Difficult to teleoperate
— Kinesthetic teaching infeasible
— Data glove hard to use
— RBO Hand 2 is not quite anthropomorphic

Slide from Abhishek Gupta



Learning from Demonstrations

* Use demonstrations to help acquire dexterous
skills

* Use “object-centric” demonstrations.
— Only care about motion of manipulated objects

— Can be given by a human using their own hands

Slide from Abhishek Gupta



Algorithm motivation

* With GPS, train controllers to imitate object-centric
demonstrations.

* Train neural network policy to generalize over
individual controllers.

* Leaves the questions:

— Which demonstration/combination of demonstrations
can each controller imitate most closely?

— How should the controller imitate the demonstrations?

Slide from Abhishek Gupta



Algorithm overview

* With GPS, train controllers to imitate object-
centric demonstrations.

* Train neural network policy to generalize over
individual controllers.

Slide from Abhishek Gupta



Problem Definition
e Model demonstrations as a mixture of Gaussians
d(T) = Zvidi(ﬂ => _ bijdi(7)

* Model controllers as a mixture of Gaussians

C cC D
p(r) = ijpj(T) = Zzaijpj(ﬂ

* Objective is to minimize divergence between these
distributions

min Drr (p(7)|]d(7))

Slide from Abhishek Gupta



Algorithm Derivation

* Instead, we use a variational upper bound, using
Jensen’s inequality.

Drr(p(M)|ld(7)) < > aizDrr (pj(T)||di(T)) + Dk (al|b)

(2%

* Minimizing upper bound, optimization problem
becomes
min » a;; Dr (p;(7)||di(7)) + D (al[b)

p,a,b <
1,7
Slide from Abhishek Gupta



Solving Optimization

* We can perform coordinate descent wrt {a,b} and p to
get 2 phases:

— Correspondence weight learning (a,b)
 Easy to find closed form solutions - convexin a,b

— Controller optimization (p)

Slide from Abhishek Gupta



Controller Optimization

— The optimization w.r.t. p uses the fixed
correspondence weights a; and minimizes
weighted |, distance between controllers and
demonstrations.
a; 1, 1, _
min Z 5 " Lz, mop; (7) §(i'3t—/iz't)TZi (& — pra) —H(p;(7))

p;(T) i A 5t

Slide from Abhishek Gupta



Algorithm Overview

Collect samples on RBO Hand 2

e

Fit dynamics using samples

N

Estimate Correspondence Weights

v

Perform optimal control to minimize weighted
. o

BADMIV

Perform supervised learning to learn a global NN
palicy

Slide from Abhishek Gupta



Experiments

* Evaluated algorithm on 3 different real world tasks using
the RBO Hand 2

— Valve rotation

— Pushing beads of abacus

— Bottle grasping

Slide from Abhishek Gupta



Baselines

* Hand designed baseline: Controller with a
hand-designed open loop policy

* Single demo baseline: A single controller
trained to imitate a single demonstration.

* Oracle: Manually hard-assign single
demonstrations to controllers

Slide from Abhishek Gupta



Valve Rotation

Slide from Abhishek Gupta



Results
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Slide from Abhishek Gupta



Pushing abacus beads

Slide from Abhishek Gupta



Results

Target Ours SingleDemo!l  SingleDemo2 Oracle HandDesignl  HandDesign2
84 749 +047 7.02+0.50 633 £2.15 7.66+ 023 838 £ 0.04 0+0
0 0.14 +£ 018 0.60 £0.69 7.08 = 1.04 0.27 & 0.42 0+0 6.5+0

0 0.89 £ 1.00 028 +£0.18 1.23 £220 1.08 £ 0.72 0+£0 8.43 £0.29

Ours SingleDemo!l  SingleDemo2 Oracle HandDesignl  HandDesign2

795 +£019 1.04 £215 727+0.65 752+0.66 0.00+0.00 838 £ 0.08

010 £ 010 085+ 121 0.19+0.14 0.09 +0.11 0.00 £ 0.00  8.40 £ 0.00

0.00 = 0.00 0.00 £0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00

Ours SingleDemo!l  SingleDemo2 Oracle HandDesignl  HandDesign2

721 £0.69 247 +£222 339+£198 774 +023 0.00£ 0.00 838 £ 0.05

0.00 + 0.00 0.00 £ 0.00 0.00 &£ 0.00 0.00 & 0.00 0.00 & 0.00  0.00 £ 0.00

0.00 + 0.00 0.00 £ 0.00  0.00 & 0.00 0.00 & 0.00 0.00 & 0.00  0.00 £ 0.00

Slide from Abhishek Gupta




Bottle Grasping

* 10/10 successful grasps learned.

Slide from Abhishek Gupta



Benefits and Limitations

e Learn from a few demonstrations

— Uses RL to learn how to how to mimic
demonstration trajectory of object(s)

* Requires phase-space system for object pose

— Gets object-centric demonstrations via ground
truth pose

— Less clear how raw pixels could be used

How can we get domain invariance with raw pixel observations?



Case Study: Using Domain-Invariant Features

UNSUPERVISED PERCEPTUAL REWARDS
FOR IMITATION LEARNING

Pierre Sermanet, Kelvin Xu* & Sergey Levine
Google Brain




Main Idea: Leverage pre-trained image features

1. Collect demonstration videos & compute features on frames
2. Unsupervised discovery of N stages of the demonstration

3. Automatically select M most relevant features for each stage
4. Run RL to match features



Learning what Success Means

Demonstrator -
(human or robot) o

Few demonstrations

o1 pouring 01

general " " - n
high-level features Unsupervised discovery of intermediate steps
pretrained \ AN /
deep model Ve — ——— -
(e.g. Inception) Feature selection maximizing step discrimination across all videos N
|
OFFLINE COMPUTATIO
REAL ROBOT
>
® )
Learning agent B
with Reinforcement Learning
J

Sermanet, Xu, L. ‘16

Slide from Sergey Levine



How does this compare to using true reward?
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Success rate for 10 rollouts

—4&— Baseline PI-Squared
~&— Our method (2 sub-goals, robot demonstration)
=& Our method (5 sub-goals, robot demonstration)
—&— Our method (4 sub-goals, human demonstrations only, slight appearance variations)

0.2

0.0
0 2 4 6 8 10

iteration number



Benefits and Limitations

Very simple and effective
Learn from raw pixels
Only as good as the features

Only provides a success/failure classifier

— Doesn’t reason about outcomes or how the task can
be solved

— Agent can potentially fool the classifier

Can we reason about the task (i.e. the reward) using demonstrations?
Inverse RL - next lecture!



Note: Can optimize for domain invariance

THIRD PERSON IMITATION LEARNING

Bradly C Stadie!'?, Pieter Abbeel'*3, Ilya Sutskever’,

1 OpenAl

2 UC Berkeley, Department of Statistics

3 UC Berkeley, Department of Electrical Engineering and Computer Science

= e
=




Domain Shift — Conclusions

Ways to handle domain shift:

- Remove human from the scene

- Have humans provide high-level goals
- Object-centric demonstrations

- Use domain-invariant representations
- Optimize for domain-invariance



Advanced Topics in Imitation & Safety

1. Imitating humans: handling domain shift
2. Safety while learning

3. Improving imitation learning from experts



Recap: DAgger

DAgger: Dataset Aggregation

goal: collect training data from pr,(0;) instead of pgata(0¢)
how? just run g (us|oy)

but need labels u;!

1. train mg(us|os) from human data D = {oy,uy,...,on,un}
2. run mp(us|o) to get dataset D, = {o1,...,0n}

3. Ask human to label D, with actions u;

4. Aggregate: D < DU D,

Ross et al. ‘11



What’s the problem?

1. train mp(u¢|os) from human data D = {o;,uy,...,on,un}
2. |run mp(usoy)jto get dataset D = {o1,...,0n}

3. Ask human to label D, with actions u;
4. Aggregate: D < DU D,

p > . o

— D) ﬂ-e(ut‘ot)
H . O¢ Uy
L —— o

Ross et al. ‘11



A partial solution to both

1. train mp(u¢|os) from human data D = {o;,uy,...,on,un}
2. |run mp(usoy)jto get dataset D = {o1,...,0n}

3. Ask human to label D, with actions u;
4. Aggregate: D < DUTD,

Idea: Train a classifier to classify accuracy of g for a given O¢

1. Only request labels for observations where policy is inaccurate

2. Insafety-critical applications: switch to safe, expert policy when
accuracy below some threshold

Laskey et al. ICRA ’16
Zhang & Oh arXiv “16

Ross et al. ‘11



Safe DAgger (Zhang & Oh “16)

Algorithm 1 SafeDAgger Blue fonts are used to highlight the differences from the vanilla DAgger.

Collect Dy using a reference policy 7*

Collect Dg,¢ using a reference policy m*

To = arg min, lsupervised (71', T, DO)

Tsafe,0 =— arg minﬂsarc Lsafe (Wsafea 70, T, Dsate U Do)

for: =1to M do
Collect D’ using the safety strategy using 7;_; and Tgafe ;—1
Subset Selection: D’ < {¢(s) € D’ |msfei—1(mi—1, d(8)) = 0}
D;,=D; UD
T; = argmin lsupervised("ra ™, D;)
Tsafe,i — arg minmm Lsate (Trsate, i, Ty Dsate U Di)

: end for

: return mys and Tate pr
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Safe DAgger (Zhang & Oh “16)

TORCS driving experiments

3.0 4
w 2-8f
)
- — DAgger-Naive
g.a 2'6 ..................................................... ' . SafeDAggeI‘-Naive 4
H* A @@ SafeDAgger-Safe
gb 240 » ’ N XX .Supervised-Naive |
< . »

2.2 e

20— a &

0 1 2
# of DAgger Iterations

103

—
o
3]

Damage/Lap
S

— DAgger-Naive
A—A SafeDAgger-Naive
0@ SafeDAgger-Safe
%—x  Supervised-Naive

# of DAgger Iterations

Solid line, no traffic; Dashed line, with traffic




SHIV: SVM-based Reduction in Human
InterVention (Laskey et al. 16)

l

Collect Robot Samples

| Train
e, N
Initial . mgn ZJ(970*aTi)
Demonstrations i=1
Supervisor Labels ‘l/

=

o\

Slide adapted from Michael Laskey
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Benefits and Limitations

Substantially reduce human intervention

Get safety of expert while still getting on-policy
data

Classifier may fail
— Predicting accuracy is not easy

Intermittent human intervention is not reliable

Safety without reliance on human to rescue the agent?



Case Study: Safety in RL

Uncertainty-Aware Reinforcement Learning for
Collision Avoidance

Gregory Kahn*, Adam Villaflor*, Vitchyr Pong*, Pieter Abbeel*!, Sergey Levine*
*Berkeley AI Research (BAIR), University of California, Berkeley
tOpenAI




Approach

* Enable autonomous agents to safely act in complex, a priori unknown environments

R Encourage safe, low-speed
collisions by reasoning about
the model’s uncertainty May experience collisions ]

Form speed-dependent,
uncertainty-aware
collision cost

Gather trajectories
using MPC controller

Train uncertainty-aware
collision prediction model

Deep neural network with Robot increases speed
uncertainty estimates from as model becomes
bootstrapping and dropout more confident

Slide adapted from Greg Kahn



Collision prediction model

collision command velocities
neural network [p (&ﬂ [() ]7[ut, oo Ut__ﬂ])J
raw image

Slide adapted from Greg Kahn



Uncertainty-aware collision cost

CeoLn(T) o SPEED-(E[p(CHH\T)]Jr\/Var[p(cHHh')])

high speed predict collision large uncertainty
large cost

Slide adapted from Greg Kahn



Estimating neural network output uncertainty

Bootstrapping

Training time Test time

v 7

Triin Triin Trgin (,u, O')

_Data_ RS
Resample with replacement
M, | | M, || M,
o, [

M M M

1 2

3

Slide adapted from Greg Kahn Efron and Tibshirani 1982



Estimating neural network output uncertainty

?a

Training time

Model

Model

Model

Slide adapted from Greg Kahn

Dropout

Aﬂlmm\;—

Model

Test time

Model

X

Model

\

B

Gal and Ghahrama

ni 2016









Initial random policy
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Example rollout from
last iteration ©f our approach










Safe versus unsafe collisions
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Benefits and Limitations

Take into account uncertainty of collision!
No reliance on human to take control
Slowing down might not always be a safe
option

Getting good uncertainty estimates is hard



Safety- Conclusions

To learn safely:

- Learn using data from a safe policy (off-policy)
- Account for uncertainty

- Be cautious (e.g. slow) in high-risk situations

Open Challenge:
- Predicting safety, and model’s uncertainty
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2. Safety while learning

3. Improving imitation learning from experts



Recap: Guided Policy Search

mi@n c(7) s.t. up = mp(xy¢)
7-7

L(T,0.0) =c()+ Y Ae(mo(xe) —we) + > pe(mo(xe) — 1)’

1. Find 7 < argmin, £(7,60, ) (e.g. via iLQR)
2. Find 0 < arg ming £(7,0, \) (e.g. via SGD)

3. A(—)\—i—a%



Recap: Policy Gradient

T—-1 -1
VoE, [R] ~ E, Z Vo log 7(a; | st, 0) (Z b — b(St)>]

t=0 t/'=t



Parameter Space vs Policy Space

why policy space?

* local optima/
easier
optimization
landscapes

* can be easier
to update in
policy space
VS parameter
space

7'('6(111;|Xt)

parameters

*

C)

Slide from Sergey Levine Montgomery & Levine ‘16



Mirror Descent Guided Policy Search (MDGPS)

min f(x) s.t. x € X

xkt3 min f(x) s.t. D(x,x*) < e
X

x"* « min D(x, xk+%) st. xe X

X

Slide from Sergey Levine Montgomery & Levine ‘16



Mirror Descent Guided Policy Search (MDGPS)

min F) ¥ €l < T, local policy optimization:
* * trajectory-centric
x o [Montgomery ‘16 ]
%y min Digg(xffiFj e x €X' o pathintegral
policy iteration
“projection”: supervised learning [Chebotar “16]

Slide from Sergey Levine Montgomery & Levine ‘16



MDGPS with Random Initial States and Local Models

min J(7) s.t. w € Iy

™
Z2 1. Fit N Gaussian trajectory
A
. o I e .
7F+3 o min J(r) s.b. Dy (n||7k) < e 5 u] distributions p;(7)
™ < /] _\) . . .
I . ft 1 = 2. For each distribution
Ty < min Dx1,(mg||7"™2) e fit p;(x¢p1|xe, uy) as
},.‘ "’f AR ‘ 7 t+1. ta. t ‘
A\ ‘\— 10 time-varying linear-Gaussian.
— '
w
= U 3. Update time-varying
linear-Gaussian m; (ug|x;)
— - 21 using LQR with KL
constraint.

Use supervised learning to train
neural net 7g(u;|X¢) to mimic all
N “local policies” 7;(us|x¢)

Montgomery*, Ajay*, et al. ‘17 Slide from Sergey Levine



Efficiency & Real-World Evaluation

Ours (training iteration 0, 4x speed)

Distance to target

Distance to target

Learning 2D reaching
(simple benchmark task):
TRPO (best known value): 3000 trials

DDPG, NAF (best known value): 2000 trials
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Slide from Sergey Levine



Imitation from Experts — Conclusions

Optimization in policy space can be easier
than in parameter space

Use clustering for learning local-linear
models with random initial states

Next time: Inverse Reinforcement Learning



