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§ Reinforcement learning (RL) model:

§ Machine learning to learn (state)    (action) 
that leads to high reward

Reinforcement Learning
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Reinforcement Learning

§ Naturally addresses:
üUnstructured environments
üNonlinear, non-smooth dynamics
üTrue model is never known

§ Practical challenges:
• Safety
• Generalization (to changes 

in the task)
• High-dimensional states/actions
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1. Safety – risk sensitive RL
2. Generalization – value iteration networks
3. Planning-based neural networks for robotics

This Talk
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Part 1: 
Risk-Aware RL
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Reinforcement Learning

Background

MDP Formulation

Robot + 
Environment

⇡✓(a|s)
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Background

RL (when model unknown/too large to plan)
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1. The world is stochastic

Safety against unluckiness
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Risk Averse RL

§ Why should we care about risk?
1. Safety against unluckiness
2. Safety against model 

mismatch
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§ Safety against ‘unluckiness’
§ Definition:

§ Risk averse goal:

Conditional Value at Risk (CVaR)
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§ Popular in finance
§ CVaR Risk = Robustness [1]

Conditional Value at Risk (CVaR)

[1]  Chow, T., Mannor, Pavone. NIPS 2015

Theorem
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Conditional Value at Risk (CVaR)

Safety against unluckiness = safety to model errors

§ CVaR Can be optimized efficiently:
1. Planning [1]

– Value iteration + linear prog. + linear interpolation
– First error bounds + convergence rate
– 𝛾-geometric rate, poly(S, A) each iteration

2. Large/continuous MDPs, RL [2,3]

– Policy gradient 
– Convergence (w.p.1) to locally optimal policy
– Compatible with deep RL

[1]  Chow, T., Mannor, Pavone. NIPS 2015
[2]  T., Glassner, Mannor. AAAI 2015
[3]  T., Chow, Ghavamzadeh, Mannor. NIPS 2015
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CVaR Policy Gradient
Conditional Value at Risk (CVaR)

CVaR definition

X - random variable

q↵(X ) - ↵ quantile

↵-CVaR:

�↵(X ) = E [X |X  q↵]

Expected ↵% worst cases

Prominent in finance

Sensitive to rare, disastrous
events

Estimation

E[X ] ⇡ 1

N

X

1iN

x

i

�↵[X ] ⇡ 1

↵N

X

↵N worst

x

i

Risk Sensitive Reinforcement Learning

T., Glassner, Mannor. AAAI 2015
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CVaR Policy Gradient
RL Application

Tetris

Softmax policy, standard features (Thiery and Scherrer, 2009)

Bonus for clearing multiple rows

Compare standard policy gradient with CVaRSGD

Risk Sensitive Reinforcement Learning
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CVaR Policy Gradient
RL Application

Tetris

Softmax policy, standard features (Thiery and Scherrer, 2009)

Bonus for clearing multiple rows

Compare standard policy gradient with CVaRSGD

Avg. reward: 451 vs. 414
Reward CVaR: 323 vs. 394

Risk Sensitive Reinforcement Learning
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CVaR Policy Gradient
RL Application

Tetris

Softmax policy, standard features (Thiery and Scherrer, 2009)

Bonus for clearing multiple rows

Compare standard policy gradient with CVaRSGD

Movie
Risk Sensitive Reinforcement Learning
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CVaR Policy Gradient
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§ Unified approach to safety
• Unluckiness
• Model mismatch

§ Efficient algorithms
§ Applications

• Finance (e.g., options[1])
• Robotics (simulation to real-world[2], safety)

Risk Averse RL - Summary

[1] T., Mannor, Xu., ICML 2014
[2] Rajeswaran et al., 2016
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Part 2: 
Value Iteration 

Networks
T., Wu, Thomas, Levine, Abbeel. NIPS 2016
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Motivation

§ Goal: autonomous robots

§ Solution: reinforcement learning?

Robot, bring me 
the milk bottle!

Image credit: http://www.wellandgood.com/wp-content/uploads/2015/02/Shira-fridge.jpg
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Motivation

§ Deep RL success: visual input    action

Mnih V., et al. Nature 2015 Levine S., et al. JMLR 2016

And many 
more…
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Motivation

§ Deep RL success: visual input    action

And many 
more…

§ Reactive policies:

State 
Observation

Conv. Layers
~2-5

Fully 
Connected Action
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§ Reactive policies can solve complex tasks
§ But do they understand?
§ A simple test: generalization on grid worlds
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Generalization in RL

Train Test
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Generalization in RL

Train Test

Observation: reactive policies do not generalize well
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Generalization in RL

§ A sequential task requires a planning computation
§ RL gets around that – learns a mapping

§ Q/advantage/expert: planning on training domains

Why do reactive policies fail to generalize?

State 
Observation

Action w. 
high advantage

Q value

Expert action

Planning -
based
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Generalization in RL

§ A sequential task requires a planning computation
§ RL gets around that – learns a mapping

§ Q/advantage/expert: planning on training domains
§ New task – need a new plan

Why do reactive policies fail to generalize?

State 
Observation

Action w. 
high advantage

Q value

Expert action

Planning -
basedLearning
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Generalization in RL

Value iteration networks:
§ Learn to plan
§ Generalize to unseen tasks
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Results
Model
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Network that Can Plan

Main idea:

Observation Reactive
policy

Planning
module

Challenges:
1. What to plan?
2. How to plan?

3. How to use the plan?
4. How to learn?
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Value Iteration Planning

§ Value function: state    long-term value
• Shortest-distance to-go
• Max. sum of future rewards

from state

§ Sufficient for reactive policy
• Action that maximizes value = optimal

§ How to calculate?
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Value Iteration Planning
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Value Iteration Planning

Reward

Current 
Value

Conv.
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Value Iteration Planning

Reward

Current 
Value

Conv.

Next
Value

Linear operation

Value Iteration = Convnet !

Max
(Channel-wise)
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Value Iteration Network (VIN)

Observation Reactive
policy

1. What to plan?

Value
Iteration

Reward,
transitions

Value function 
+ attention
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Observation Reactive
policy

1. What to plan?
2. How to plan?
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Iteration
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Reward,
transitions

Value Iteration Network (VIN)

Backprop through the whole network!
Learn planning computation that’s useful for 

predicting actions

Observation Reactive
policy

Value
Iteration

Value function 
+ attention
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Results
Results
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§ Supervised learning

Grid-World Domain

Current position

Data:

,
Shortest-path 

direction

5000 random maps X 7 trajectories

§ Compare VINs with:
– Convnet inspired by DQN architecture
– Fully convolutional net (FCN)

(Mnih et al. Nature 2015)

(Long et al. CVPR 2015)
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Grid-World Domain

Prediction loss on test set

Reactive 
baselines
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Grid-World Domain

Success of reaching goal

Reactive 
baselines
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Grid-World Domain
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Grid-World Domain
R

ew
ard

Value
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§ Is it only ‘depth’?
– VIN with untied weights
– Degrades performance, esp. with less data

§ Train using RL
– TRPO 

Grid-World Domain

(Schulman et al. ICML 2015)
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§ A VIN is just a neural network
§ Compose with perception & control modules
§ Natural image input: Mars navigation

Perception & Control
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§ Continuous control
• Discrete planning in continuous domain? 
• Let the network figure it out!

Perception & Control
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§ Train: Guided policy search (unknown dynamics)
§ Compare: conv-net

Perception & Control

(Levine & Abbeel, NIPS 2014)

(Mnih et al. Nature 2015, Lillicrap et al. ICLR 2016)



A. Tamar, UC Berkeley

Perception & Control

§ Train: Guided policy search (unknown dynamics)
§ Compare: conv-net

(Levine & Abbeel, NIPS 2014)

(Mnih et al. Nature 2015, Lillicrap et al. ICLR 2016)
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§ Navigate website links to find query

§ Hierarchical composition

More Examples

(Nogueira & Cho, NIPS 2016)
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§ Navigate website links to find query
§ Plan on approx. graph (1st+2nd level categories)
§ Learn feature similarity mappings

Plan on Approximate Graph

(Nogueira & Cho, NIPS 2016)

Wikipedia for schools 
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§ Navigate website links to find query
§ Plan on approx. graph (1st+2nd level categories)
§ Learn feature similarity mappings

Plan on Approximate Graph

(Nogueira & Cho, NIPS 2016)

Wikipedia for schools Success
from root

Baseline 1025/2000
VIN 1030/2000
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§ Navigate website links to find query
§ Plan on approx. graph (1st+2nd level categories)
§ Learn feature similarity mappings

Plan on Approximate Graph

(Nogueira & Cho, NIPS 2016)

Wikipedia for schools Success
from root

Success from 
random

Baseline 1025/2000 304/4000
VIN 1030/2000 346/4000
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§ Follow-up work (independent)
– 1st person navigation

Extensions

Cognitive Mapping and Planning for Visual Navigation, 
S. Gupta, J. Davidson, S. Levine, R. Sukthankar, J. Malik, arXiv 2017

Cognitive Mapping and Planning for Visual Navigation

Saurabh Gupta1,2 James Davidson2 Sergey Levine1,2 Rahul Sukthankar2 Jitendra Malik1,2

1UC Berkeley 2Google
1{sgupta, svlevine, malik}@eecs.berkeley.edu, 2{jcdavidson, sukthankar}@google.com

Abstract

We introduce a neural architecture for navigation in novel
environments. Our proposed architecture learns to map
from first-person viewpoints and plans a sequence of
actions towards goals in the environment. The Cognitive
Mapper and Planner (CMP) is based on two key ideas:
a) a unified joint architecture for mapping and planning,
such that the mapping is driven by the needs of the
planner, and b) a spatial memory with the ability to plan
given an incomplete set of observations about the world.
CMP constructs a top-down belief map of the world and
applies a differentiable neural net planner to produce the
next action at each time step. The accumulated belief
of the world enables the agent to track visited regions
of the environment. Our experiments demonstrate that
CMP outperforms both reactive strategies and standard
memory-based architectures and performs well in novel
environments. Furthermore, we show that CMP can also
achieve semantically specified goals, such as “go to a
chair”.

1. Introduction
In this work we study the problem of robot navigation in

novel environments. As humans when we navigate through
environments, we can reason about free-space, static and
dynamic obstacles, environment topology, and common
sense structure of indoor environments. This allows us to
make our way through novel environments without relying
on an external map. Even in very complex indoor environ-
ments, human navigation is much better than uninformed
exploration. Part of this is made possible by our experi-
ences in other indoor environments. We are able to extract
common sense rules and heuristics for navigation. For ex-
ample, to go from one room to another, we must first exit
the first room; to go to a room at the other end of the build-
ing, getting into a hallway is more likely to succeed than

Work done when S. Gupta was an intern at Google.
Project website with videos: https://sites.google.com/

view/cognitive-mapping-and-planning/.

90o

Egomotion

Differentiable 
Hierarchical 

Planner

Update multiscale belief 
of the world in egocentric 

coordinate frame

Multiscale belief of the 
world in egocentric 
coordinate frame

90o

Egomotion

90o

Action

Differentiable 
Hierarchical 

Planner 90o

Action

Differentiable 
Mapper

Differentiable 
Mapper

Goal

Figure 1: Overall network architecture: Our learned navigation network
consists of a mapper and planner module. The mapper writes into a latent
memory that corresponds to an egocentric map of the environment, while
the planner uses this memory to output navigational actions. The map is
not supervised explicitly, but rather emerges naturally from the learning
process.

entering a conference room; a kitchen is more likely to be
situated in open areas of the building than in the middle of
cubicles. These common sense rules allow humans to take
common-sense shortcuts without having to explore all parts
of a new space in detail.

However, classic approaches to navigation rarely make
use of such common sense patterns. Classical SLAM based
approaches [14, 59] first build a 3D map using LIDAR,
depth, or structure from motion, and then plan paths in
this map. These maps are built purely geometrically, and
nothing is known until it has been explicitly observed, even
when there are obvious patterns. This becomes a problem
for goal directed navigation. Humans can often guess, for
example, where they will find a chair or that a hallway will
probably lead to another hallway but a classical robot agent
can at best only do uninformed exploration. The separation
between mapping and planning also makes the overall sys-
tem unnecessarily fragile. For example, the mapper might
fail on texture-less regions in a corridor, leading to failure
of the whole system, but precise geometry may not even be
necessary if the robot just has to keep traveling straight.

Inspired by this reasoning, recently there has been an
increasing interest in more end-to-end learning-based ap-
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Extensions

Cognitive Mapping and Planning for Visual Navigation, 
S. Gupta, J. Davidson, S. Levine, R. Sukthankar, J. Malik, arXiv 2017
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§ Learn to plan     generalization
§ VIN framework

– Motivated by planning theory
– Differentiable planner (VI = convnet)
– Easy to compose with perception/control

§ Challenges
– Planning in high-dim spaces

Summary – Value Iteration Networks
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Part 3: 
Hindsight MPC

T., Thomas, Zhang, Levine, Abbeel. ICRA 2017
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§ Robotic manipulation
§ Accurate dynamics model not available
§ MPC: well-established control method
§ Recently: adaptive MPC for manipulation [1,2]

Motivation

[1] Fu, Levine, Abbeel. IROS 2016
[2] Lenz, Knepper, Saxena. RSS 2015
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Background - Adaptive MPC
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Background - Adaptive MPC

linear

quadratic
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Background - Adaptive MPC
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Adaptive MPC

§ Sub-optimality:
– Prediction (dynamics) error
– Finite horizon

§ Typically H << T: 
– Mitigate model errors
– Computational feasibility

Question: how to improve in a 
repeated task?
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Idea: the Hindsight 
Plan
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Hindsight MPC
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Hindsight MPC

§ MPC Sub-optimality:
ü Prediction (dynamics) error
ü Finite horizon

§ Hindsight actions are better!
– How to improve (online) MPC?

Change cost such that online MPC would 
mimic the hindsight actions!
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Hindsight MPC

§Original LQR cost

§Shaped LQR cost

Ob
se

rv
at

io
n

Co
nt

ro
l

Black-box
NN

Diff. 
planning 
algorithm

Intuition: learn 
way points!

goal

shaped goal
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Hindsight MPC

§ Learning problem:

Make the online MPC mimic the hindsight plan!

Hindsight 
actions
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Hindsight MPC

§ Learning problem:

Make the online MPC mimic the hindsight plan!

Hindsight 
actions

: diff. through 
dynamic programming 

LQR calculation
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Illustrative Example
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Illustrative Example
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Results – Peg Insertion

State space: 26D 
• 7 DoF arm (7 angles + 7 ang. velocities)
• 2 end-effector points (6 positions + 6 velocities)
Dynamics: GMM 
• Prior – free space dynamics
• Online adaptation
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Results – PR2 Peg Insertion
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Conclusion

§ Decades of research on planning/control
§ Control algorithm       inductive bias

§ Principled approach to network design
§ Better generalization (change in task)
§ New algorithmic ideas
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Conclusion

VIN Model-
based RL

Model-free 
RL

Inverse RL

Rust 1988
Zucker & Bagnell 2011

E2C

Watter et al. 2015Mnih et al, 2015
Oh et al, 2016

§ Inductive bias 
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§ Inductive bias 

Conclusion

VINModel-free 
RL

Neural Turing 
machine

Backprop KFDivide & 
conquer NN

Nowak & Bruna, 2016Graves et al, 2014 Haarnoja et al., 2016

Model-
based RL

Inverse RL

Rust 1988
Zucker & Bagnell 2011

E2C

Watter et al. 2015

(algorithm learning)



A. Tamar, UC Berkeley

Thanks

§ Collaborators
• Pieter Abbeel (UCB), Yinlam Chow (Stanford), Mohammad Ghavamzadeh

(Adobe), Yonatan Glassner (Technion), Sergey Levine (UCB), Shie Mannor 

(Technion), Marco Pavone (Stanford), Garrett Thomas (UCB), Yi Wu (UCB), 

Tianhao Zhang (UCB)

§ Funding
• Siemens
• Viterbi Scholarship


