Advanced Model Learning February 27, 2017

Chelsea Finn

Last Time: DQN with images

This lecture: Can we use model-based methods with images?

Recap: model-based RL

- model-based reinforcement learning version 1.0:
 - 1. run base policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
 - 2. learn dynamics model $f(\mathbf{x}, \mathbf{u})$ to minimize $\sum_i ||f(\mathbf{x}_i, \mathbf{u}_i) \mathbf{x}'_i||^2$

 - 3. backpropagate through $f(\mathbf{x}, \mathbf{u})$ to choose actions (e.g. using iLQR) 4. execute those actions and add the resulting data $\{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_j\}$ to \mathcal{D}
- What about POMDPs?

- 1. Models in latent space
- 2. Models directly in image space
- 3. Inverse models

Note: This is an active area of research.

Outline

- 1. Models in latent space
- 2. Models directly in image space
- 3. Inverse models

Outline

Key idea: learn embedding $g(\mathbf{o}_t)$, then learn in latent space

What do we want g to be? It depends on the method — we'll see.

Learning in Latent Space

(model-based or model-free)

Key idea: learn embedding $g(\mathbf{o}_t) = \mathbf{x}_t$, then learn in latent space

Autonomous reinforcement learning on raw visual input data in a real world application

Sascha Lange, Martin Riedmiller Department of Computer Science Albert-Ludwigs-Universität Freiburg

Learning in Latent Space

(model-based or **model-free**)

Arne Voigtländer Shoogee GmbH & Co. KG Krögerweg 16a

controlling a slot-car

1. collect data with exploratory policy 2. learn low-dimensional embedding of image (how?) 3. run q-learning with function approximation with embedding

embedding is low-dimensional and summarizes the image

1. collect data with exploratory policy 2. learn low-dimensional embedding of image (how?)

Pros:

- + Learn visual skill very efficiently
- **Cons:**
- Autoencoder might not recover the right representation
- Not necessarily suitable for model-based methods

3. run q-learning with function approximation with embedding

Key idea: learn embedding $g(\mathbf{o}_t) = \mathbf{x}_t$, then learn in latent space (model-based or model-free)

Deep Spatial Autoencoders for Visuomotor Learning

Fig. 1: PR2 learning to scoop a bag of rice into a bowl with a spatula (left) using a learned visual state representation (right).

Learning in Latent Space

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel

collect data with exploratory policy learn smooth, structured embedding of image learn local-linear model with embedding run iLQG to learn to reach image of goal & goal gripper pose

embedding is smooth and structured

- 1. collect data with exploratory policy
- 2. learn smooth, structured embedding of image
- 3. learn local-linear model with embedding

4. run iLQG to learn to reach image of goal & goal gripper pose

Because we aren't using states, we need a reward.

autonomous execution

6x real-time

Our Method autonomous execution

-1-

Our Method autonomous execution

0

O - current feature point X - goal feature point

autonomous execution

real-time

1. collect data with exploratory policy 2. learn smooth, structured embedding of image 3. learn local-linear model with embedding 4. run iLQG to learn to reach image of goal & goal gripper pose

Pros:

- + Learn complex visual skill very efficiently
- + Structured representation enables effective learning

Cons:

- Autoencoder might not recover the right representation

Key idea: learn embedding $g(\mathbf{o}_t) = \mathbf{x}_t$, then learn in latent space (model-based or model-free)

Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images

Manuel Watter*

Learning in Latent Space

- 1. collect data
- 2. learn embedding of image & dynamics model (jointly)
- 3. run iLQG to learn to reach image of goal

embedding that can be **modeled**

Swing-up with the E2C algorithm

Thought exercise: Why reconstruct the image? Why not just learn embedding and model on embedding?

- 1. Models in latent space 2. Models directly in image space
- 3. Inverse models

Outline

Models with Images

Action-conditioned video prediction

Action-Conditional Video Prediction using Deep Networks in Atari Games

on
$$f(\mathbf{o}_t, \mathbf{u}_t) = \mathbf{o}_{t+1}$$

Models with Images

Action-conditioned video prediction $f(\mathbf{o}_t, \mathbf{u}_t) = \mathbf{o}_{t+1}$

(a) Feedforward encoding

Key components: multi-step prediction curriculum learning a

(b) Recurrent encoding

$$f(\mathbf{o}_t, \mathbf{u}_{t:T-1}) = \mathbf{o}_{t+1:T}$$

ind/or scheduled sampling

can make 100-step predictions

fails to model a critical part of the game

Maybe not.

Figure 3: Mean squared error over 100-step predictions

Is it useful? Using model for informed exploration

Using model for informed exploration:

- 1. Store most recent d frames
- 2. For every valid action, predict 1 frame ahead 3. Take action corresponding to future frame least like the previous d frames

Use Gaussian kernel similarity metric on images:

$$n_D(\mathbf{x}^{(a)}) = \sum_{i=1}^d k(\mathbf{x}^{(a)}, \mathbf{x}^{(i)}); \quad k(\mathbf{x}, \mathbf{y}) = \exp(-\sum_j \min(\max((x_j - y_j)^2 - \delta, 0), 1) / \sigma))$$

- *caveat: prediction model was trained with data from DQN agent
 - more on exploration later in this course!

Action-conditioned video prediction $f(\mathbf{o}_t, \mathbf{u}_t) = \mathbf{o}_{t+1}$

(a) Feedforward encoding

Pros:

- + Stability through multi-step prediction
- + Useful for control

Cons:

- Synthetic images are easier to generate
- Not immediately clear how to plan with it

(b) Recurrent encoding

What about real images?

Chelsea Finn* UC Berkeley

Deep Visual Foresight for Planning Robot Motion

Chelsea Finn^{1,2} and Sergey Levine^{1,2}

Unsupervised Learning for Physical Interaction through Video Prediction

Ian Goodfellow OpenAI

Sergey Levine Google Brain

Data collection - 50k sequences (1M+ frames)

data publicly available for download sites.google.com/site/brainrobotdata

test set with novel objects

Train 8-step predictive model

Atari recurrent model

— > doesn't have capacity to represent real images.

evaluate on held-out objects

Train predictive model

action-conditioned multi-frame video prediction via flow prediction

- feed back model's predictions for multi-frame prediction -
- trained with I₂ loss

Train predictive model

convolutional LSTMs

action-conditioned

evaluate on held-out objects

Train predictive model Finn et al., '16

Are these predictions good? accurate? useful?

Kalchbrenner et al., '16

What is prediction good for?

action magnitude: **0**x 0.5x

1x

1.5x

Planning with Visual Foresight (MPC)

- 1. Sample N potential action sequences
- 2. Predict the future for each action sequence
- 3. Pick best future & execute corresponding action
- 4. Repeat 1-3 to replan in real time

es equence nding

Which future is the best one?

Specify goal by selecting where pixels should move.

Select future with maximal probability of pixels reaching their respective goals.

How it works

Results

- evaluation on short pushes of novel objects

- translation & rotation

Only human involvement during training is: programming initial motions and providing objects to play with.

action-conditioned multi-frame video prediction via flow prediction

Pros:

- + Real images
- + Very limited human involvement (self-supervised)
- + Approach should improve as video prediction methods improve Cons:
- Despite real images, limited background variability -
- Somewhat simple skills
- Compute intensive at test-time

- 1. Models in latent space
- 2. Models directly in image space
- 3. Inverse models

Outline

Inverse Models

Thought exercise revisited: Why reconstruct the image?

Learn embedding via inverse model $f(\mathbf{o}_t, \mathbf{o}_{t+1}) = \mathbf{u}_t$

Inverse Models

Learn embedding via inverse mod

Learning to Poke by Poking: Experiential Learning of Intuitive Physics

Pulkit Agrawal*Ashvin Nair*Pieter AbbeelJitendra MalikBerkeley Artificial Intelligence Research Laboratory (BAIR)University of California Berkeley

$$el f(\mathbf{o}_t, \mathbf{o}_{t+1}) = \mathbf{u}_t$$

Sergey Levine

Learn embedding via inverse model $f(\mathbf{o}_t, \mathbf{o}_{t+1}) = \mathbf{u}_t$

regularize embedding with forward model

Learn embedding via inverse model $f(\mathbf{o}_t, \mathbf{o}_{t+1}) = \mathbf{u}_t$ Greedily plan with inverse model and image of goal

Qualitative Results

Initial

Final Target

Learn embedding via inverse model $f(\mathbf{o}_t, \mathbf{o}_{t+1}) = \mathbf{u}_t$

Pros:

- + Very limited human involvement (self-supervised)
- + Don't have to reconstruct image **Cons:**
- Can't plan with inverse model
- Inverse model objective just cares about action

Model-Based vs. Model-Free Learning Models:

- + Easy to collect data in a scalable way (self-supervised)
- + Possibility to transfer across tasks
- + Typically require a smaller quantity of supervised data
- Models don't optimize for task performance
- Sometimes harder to learn than a policy
- Often need assumptions to learn complex skills (continuity, resets) **Model-Free:**
- + Makes little assumptions beyond a reward function
- + Effective for learning complex policies
- Require a lot of experience (slower)
- Not transferable across tasks

Advanced Model Learning Takeaways

- Learning the **right** features is important

- Need to think about reward/objective when using models of observations

Next time: advanced imitation learning