Deep RL Assignment 1: Imitation Learning
Spring 2017
due Febrary 8th, 11:59 pm

The goal of this assignment is to experiment with imitation learning, including direct behavior cloning
and the DAgger algorithm. In lieu of a human demonstrator, demonstrations will be provided via an expert
policy that we have trained for you. Your goals will be to set up behavior cloning and DAgger, and compare
their performance on a few different continuous control tasks from the OpenAl Gym benchmark suite. Turn
in your report and code as described in Section 5.

Section 1. Getting Set Up

The starter code can be found at https://github.com/berkeleydeeprlcourse/hwll There are three
dependencies described below. For this assignment and others in the course, you may use whatever deep
learning library you wish, but your code should be in Python. We would strongly appreciate avoiding
unusual dependencies (beyond Theano, TensorFlow, and other standard DL libraries). If your code does
have particular additional dependencies, please be sure to document these in your submission email so that
we can run your code.

1. TensorFlow: Follow the instructions at https://www.tensorflow.org/get_started/os_setup to
install TensorFlow. We will not require a GPU for assignments in this course, but if you have one,
you may want to consider installing the GPU version along with CUDA and CuDNN. Note that you
don’t have to use TensorFlow for your implementation, but you do need it to run the expert policy for
imitation.

2. OpenAl Gym: We will use environments in the OpenAl gym, a testbed for reinforcement learning
algorithms. For installation and usage instructions see https://gym.openai.com/docs.

3. MuJoCo: We will use MuJoCo for physics simulation in this assignment. Download version 1.31 from
mujoco.org and obtain a license from the course instructors.

Section 2. Behavioral Cloning

1. The starter code provides an expert policy for each of the MuJoCo tasks in OpenAl gym (See
run_expert.py). Generate roll-outs from the provided policies, and implement behavioral cloning.

2. Run behavioral cloning (BC) and report results on two tasks — one task where a behavioral cloning
agent achieves comparable performance to the expert, and one task where it does not. When providing
results, report the mean and standard deviation of the return over multiple rollouts in a table, and state
which task was used. Be sure to set up a fair comparison, in terms of network size, amount of data,
and number of training iterations, and provide these details (and any others you feel are appropriate)
in the table caption.

3. Experiment with one hyperparameter that affects the performance of the behavioral cloning agent, such
as the number of demonstrations, the number of training epochs, the variance of the expert policy, or
something that you come up with yourself. Show a graph of how the BC agent’s performance varies
with the value of this hyperparameter, and state the hyperparameter and a brief rationale for why you
chose it in the caption for the graph.

Section 3. DAgger

1. Implement DAgger. See the code provided in run_expert.py to see how to query the expert policy
and perform roll-outs in the environment.


https://github.com/berkeleydeeprlcourse/hw1
https://www.tensorflow.org/get_started/os_setup
https://gym.openai.com/docs
mujoco.org

2. Run DAgger and report results on one task in which DAgger can learn a better policy than behavioral
cloning. Report your results in the form of a learning curve, plotting the number of DAgger iterations
vs. the policy’s mean return, with error bars to show the standard deviation. Include the performance
of the expert policy and the behavioral cloning agent on the same plot. In the caption, state which
task you used, and any details regarding network architecture, amount of data, etc. (as in the previous
section).

Section 4. Bonus: Alternative Policy Architectures

1. (Optional) Experiment with a different policy architecture, e.g. using recurrence or changing the size
or nonlinearities used. Compare performance between your new and original policy architectures using
behavioral cloning and/or DAgger, and report your results in the same form as above, with a caption
describing what you did.

Section 5. Turning it in.

1. Your report should be a PDF with 1 or 2 pages, containing 3 things: Table 1 for a table of results from
question 2.2, Figure 1 for question 2.3, and Figure 2 for question 3.2. Optionally, you may include a
table or figure for question 4.1.

You do not need to write anything else in the report, just include the figures with captions as described
in each question above. See the attached handout for notes on how to generate plots.

2. In addition to the pdf, you should turn in one zip file with your code any any special instructions we
need to run it to produce each figure or table below (e.g. “run python myassignment.py -sec2ql” to
generate the result for Section 2 Question 1).

3. Turn in your assignment by emailing your report and code to berkeleydeeprlcourse@gmail.com,
with the subject line “Deep RL Assignment 17.



