Direct Collocation Methods for
Trajectory Optimization and Policy Learning

Y)
Y A% o T
— w.t‘ =
"y) : \ h '
AN
XX

HA R

CS 294-112: Deep Reinforcement Learning

Guest Lecture

lgor Mordatch, OpenAl

Overview

® Last Time: Learning dynamics models, optimal
control, and policy learning

® Focused on using forward dynamics models and
shooting methods (LQR, DDP)
® Today:

® | ook at inverse dynamics models, direct collocation in
detail (for optimal control and policy learning)

® How to optimize complex movement with contacts
® Dealing with unknown and uncertain dynamics

® Applications to biomechanics

Trajectory Optimization with Direct Collocation

Learning Control Policies with Direct Collocation

Unknown/Uncertain Dynamics and Applications

Trajectory Optimization with Direct Collocation

Learning Control Policies with Direct Collocation

Unknown/Uncertain Dynamics and Applications

Trajectory Optimization

% target

Trajectory Optimization

Forward Shooting:
mm ZCt x!th = f(x',u")

) target

Trajectory Optimization

Forward Shooting:
mm ZCt x't = f(x!, u?)

3 P RN
u=y) target

Trajectory Optimization

Forward Shooting:
mm ZCt x't = f(x', u?)

) target

Trajectory Optimization

Forward Shooting:
mm ZCt x!th = f(x',u")

) target

Forward Shooting:

Poor Conditioning

Forward Shooting:

Poor Conditioning

Forward Shooting:

Poor Conditioning

Forward Shooting:

Poor Conditioning

Poor Conditioning

Forward Shooting:

Narrow Feasible Region

Forward Shooting:
mm ZC’t x't = f(x', u’)

Narrow Feasible Region

Forward Shooting:
mm ZC’t x' = f(x", u")

implicit hard constraint

Narrow Feasible Region

Forward Shooting:

mm ZC’t x'tt = f(x',u)

feasible region

Narrow Feasible Region

Forward Shooting:

mm ZCt x!th = f(x',u)

feasible region

Narrow Feasible Region

Forward Shooting:

mm ZCt x!th = f(x',u)

feasible region

Narrow Feasible Region

Forward Shooting:

mm ZC’t x'tt = f(x',u)

soft constraint

Narrow Feasible Region

Forward Shooting:

mm ZCt x!th = f(x',u)

Narrow Feasible Region

Forward Shooting:

mm ZCt x!th = f(x',u)

e Comes up as an issue in practice
e collisions, falling down, etc...

® Prone to falling into local minima

e Makes solution sensitive to initial guess

e Initial guess from demonstrations and
randomization helps

From Last Lecture:

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints

min c(x¢,ug) s.t. xp = f(xXp—1,04-1)

From Last Lecture:

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints
T
min

ul ,.--,uT,XI’-.-,XT t

c(xg,ue) st x¢ = f(xp—1,u¢-1)
1

-
—:’.\,}
\\-___‘_\ -._«..::;\‘:
\‘:___
\\‘\

From Last Lecture:

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints

min Z(’ (x¢,uy) s.t. xp = fx—1,0-1)

Direct Collocation

Forward Shooting:
mm ZC’t x!th = f(x',u")

Direct Collocation:

Direct Collocation

Forward Shooting:
mm ZC’t x!th = f(x',u")

Direct Collocation:

From Last Lecture:

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints
T
min

ul ,.--,uT,XI’-.-,XT t

c(xg,ue) st x¢ = f(xp—1,u¢-1)
1

-
—:’.\,}
\\-___‘_\ -._«..::;\‘:
\‘:___
\\‘\

Direct Collocation

Forward Shooting:
mm ZC’t x!th = f(x',u")

inverse dynamics function
Direct Collocation: $

min ZC’t(Xt), st fi(xELxT) =ul e U

Direct Collocation

Direct Collocation

Direct Collocation:

min ZC’t(Xt), st f7H(xEx"T) =ut e

t

@j Q()t @+1

////

@t -

e Only pairwise dependencies
e Good conditioning

e changing x1 has similar effect as changing xT
e No forward integration instability

Direct Collocation

Direct Collocation:
mm ZCt), st fHxELxTTH) =uteld

Explicit rather than implicit constraint

Direct Collocation

Direct Collocation:

mm ZCt), st i, xMT) =ut el

Explicit rather than implicit constraint
Can be hard or soft
Less prone to local minima

Shooting vs Direct Collocation

Forward Shooting:
mm ZCt x!th = f(x',u")

J Optlmlze over controls
® State trajectory is implicit

® Dynamics is an implicit constraint (always satisfied)

Direct Collocation:

mm ZC’t), st fHxEL,xTTHY =uteld

® Optlmlze over states
® Controls and forces are implicit

® Dynamics is an explicit constraint (can be soft)

Inverse Dynamics Model
f_l(Xt,Xt_H) _ ut

e Describes what controls and forces you apply when
transitioning from xt to xt*1

Inverse Dynamics Model
f_l(Xt,Xt_H) _ ut

e Describes what controls and forces you apply when
transitioning from xt to xt*1

® Can be learned from data

® - &' & &t .- (@T

AN/

o' o @ -

Training data input: x’ x!™!

Target output: u’

Inverse Dynamics Model
f_l(Xt,Xt_H) _ ut

e Describes what controls and forces you apply when
transitioning from xt to xt*1

® Can be learned from data

e For rigid multi-body dynamics, we can do better
when we know system parameters

Rigid Multi-Body Dynamics

Generalized coordinates:

Xt:qt

Rigid Multi-Body Dynamics

Generalized coordinates:

Xt:qt

Rigid Multi-Body Dynamics

- : ~1 +1
Generalized coordinates: ' ® &
t—1 ! t—1 ! 1
t .t ¢+ 9 —-d ., q97 —2q"+q \l/
X =q TC=""95 1= 512 &

Calculate velocities and accelerations from nearby states

Rigid Multi-Body Dynamics

Generalized coordinates: & Tt &t
¢ L oal—qt ., ql-2q'+ gt \ /
X =49 = "5 17 522 &
Dynamics equation: generalization of £ = ma
M(q) §+C(q,q) §=Bu+J(q)" f /'
- <2

Rigid Multi-Body Dynamics

- : ~1 +1
Generalized coordinates: ' ® &
t—1 ! t—1 ! 1
t .t ¢+ 9 —-d ., q97 —2q"+q \l/
X =q TC=""95 1= 512 &

Dynamics equation: generalization of £ = ma

M(q) G +C(q.q) g=Bu+J(q)" f

Generalized mass and Coriolis matrices o

Rigid Multi-Body Dynamics

- : ~1 +1
Generalized coordinates: ' ® &
t—1 ! t—1 ! 1
t .t ¢+ 9 —-d ., q97 —2q"+q \l/
X =q TC=""95 1= 512 &

Dynamics equation: generalization of £ = ma

M(q) g+ C(q,q) g=Bu+ J(q)" f J o

. . O
Controls and actuation matrix o <
) ® o0
B | _

Rigid Multi-Body Dynamics

- : ~1 +1
Generalized coordinates: ' ® &
t—1 ! t—1 ! 1
t .t ¢+ 9 —-d ., q97 —2q"+q \l/
X =q TC=""95 1= 512 &

Dynamics equation: generalization of £ = ma

M(q) §+ C(a,¢q) ¢ = Bu+J(q)" f

Constraint forces and constraint Jacobian <= \‘/

Rigid Multi-Body Dynamics

- : ~1 +1
Generalized coordinates: ' ® &
t—1 ! t—1 ! 1
t .t ¢+ 9 —-d ., q7 —29"+q \l/
X =q TC=""95 1= 512 &

Dynamics equation: generalization of £ = ma

M(q)d+C(q,4) g=Bu+J(q)" f

For more detail, see chapters 2 and 3 in =

Springer Handbook of Robotics and
Analytical Dynamics: A New Approach

Rigid Multi-Body Dynamics

- : ~1 +1
Generalized coordinates: ' ® &
t—1 ! t—1 ! 1
t .t ¢+ 9 —-d ., q97 —2q"+q \l/
X =q TC=""95 1= 512 &

Dynamics equation: generalization of £ = ma

M(q)q+C(q,q) 9= Bu+J(q)" f

Inverse dynamics function: =

fHET X = argmin || V]
u

Rigid Multi-Body Dynamics

- : ~1 +1
Generalized coordinates: ' ® &
t—1 ! t—1 ! 1
t .t ¢+ 9 —-d ., q97 —2q"+q \l/
X =q TC=""95 1= 512 &

Dynamics equation: generalization of £ = ma

M(q)q+C(q,q) 9= Bu+J(q)" f

Inverse dynamics function: =

fHET X = argmin || V]
u

can be solved numerically, or analytically [Todorov 14] - Py

Rigid Multi-Body Dynamics

Generalized coordinates: & ‘f &
b .t_qt—l_qt "t_qt—l_th_i_qt—l—l \ /

X =49 = "o 4= ot2 @f
Dynamics equation: generalization of £ = ma
M(q)q+C(q,q) 9= Bu+J(q)" f /‘

Inverse dynamics residual: = <

r(x 7 x5 X)) = min || V]|?
uf

Rigid Multi-Body Dynamics

Generalized coordinates: g' & @

t—1 t t—1 t t+1
.+ 4 -9 ., 9 —2q9°+q \l/
Xt — (1t gt = §' =

20t ot?

Dynamics equation: generalization of £ = ma

M(q)4+C(q,4) g= Bu+J(q)" f

Inverse dynamics residual:

’I“(Xt_l, th Xt—l—l)

= min || Y[’
uf

Simple Particle Example

Dynamics equation: U — g = mX

Inverse dynamics function:
f_l(Xt_l,Xt,XH_l) _ ut _ m(Xt—l . 2Xt i Xt—|—1)/5t +g

Cost: C(x) = ||x][?

Known:

Initial state: x° System parameters: m External forces: 8
Optimization unknowns: Xl, eey x!
Solution:

States: X', ...,XT =0 Implicit controls: uo, ...,XT_1 — g

& - &' & &t - @T

N

g' @ g -

Numerical Solutions for Direct Collocation Methods

& - &' & & - &

N

a - @—1 @ @+1

e First Thought: Set up a TensorFlow graph and optimize
with gradient descent

® For shooting methods we had 2nd order methods
(Iterative LQR, DDP)

e For direct collocation we also can apply a truncated
2nd order method

Gauss-Newton Method

e Total trajectory cost is

C(X) =) c(¢'(X))

Gauss-Newton Method

e Total trajectory cost is

C(X) =) c(@'(X))

includes inverse dynamics residual

and any cost function features

Gauss-Newton Method

e Total trajectory cost is

C(X) =) c(¢'(X))

e |ts gradient and truncated Hessian are
Cx = Zcfi,d)g(

t

Cxx = Z(¢§<)chj,¢¢§< + chpxx & Z(¢§()chp¢¢§(

t t

Gauss-Newton Method

e Total trajectory cost is

C(X) =) c(¢'(X))

e |ts gradient and truncated Hessian are
Cx = Zcfpc,bg(

t

Cxx =) (%) "chedk + chdkx ~ Y _(d%) chedk

t t

® Find optimal solution by iterative Gauss-Newton steps

X* = X* — CxxCOx

Gauss-Newton Method

e Total trajectory cost is

=3 o(¢(X

® |ts gradient and truncated Hessian are
Cx = Zcfbc/)g(
t

Cxx =) _(P%) chadx + chbxx =) (Dx) Chodx
t t
® Find optimal solution by iterative Gauss-Newton steps
X* — X* _ C)z;(Cx Ty.pi.cally use dampe.d Hessian
(similar to Trust Region)
(Cxx + AI)Ox

Gauss-Newton Method

® Requires inverting (|x|T) x (]x|T') Hessian every time???

X* = X* — CxxCx

® Hessian is block sparse

& - &' & &t . &

: N

@ - @' @ @t -
® Can use sparse linear system solvers

e python: linalg.spsolve

e Other methods possible (multigrid, projection, spectral?)
e Constrained optimization possible (SQP) [Posa and Tedrake 12]

Dynamics with Contact

® Both shooting and collocation methods can be applied
to control of movement without contact

e flying, driving, swimming robots, collision-free paths

Dynamics with Contact

® Both shooting and collocation methods can be applied
to control of movement without contact

e flying, driving, swimming robots, collision-free paths

e With contact, it is difficult to apply either method

® |legged robots, manipulation

Dynamics with Contact

e Discontinuous jumps in contact forces (and their number)

¢ Dynamics equation:

,‘ M(q) 4+ C(q,dq) g = Bu+J(q)"
et \. J
q2

Dynamics with Contact

e Discontinuous jumps in contact forces (and their number)

¢ Dynamics equation:

/ »\. / M(q) &+ C(a,q) 4 = Bu +J(q)" [t
—— V;
qZ

e No gradient information from inactive contacts

Can’t anticipate being able to apply forces
- —

e

42

Dynamics with Contact

manual specification

track demonstrations
I

motion structure

Dynamics with Contact

——/ \.'/ |}

47

|

e Contact activity is an indirect function of state

e What if we make contact activity a direct
optimization variable like we did for state?

Contact-Invariant Optimization

[Mordatch, Todorov, Popovic, SIGGRAPGH 2012]

Contact-Invariant Optimization

Contact-Invariant Optimization

min g C*(x") x: [qc]
Ctn = 1: foot/hand n is in contact with ground at time t

do d+ d2 C ar

—

o/

¢ ~% . CTrarm=0/ : -
‘ . /s (o - : \ - g
) Py > Y . : o
‘ < \ \ ' -~ ‘\‘
R " | o &ib 4:‘“‘ \ﬂ ‘ é“"h I
""«"“““-‘ i3 7 \1 4
i \ F -
. 4 \ 4
{ {1 <
Pa > !

v

Co,rfoot=1

.

Contact-Invariant Optimization

min g C*(x") x: | qc]
enforce contact and dynamics consistency between q and C

Jo (o[’

Contact Consistency

When ch = 1 limb n must be touching ground and not sliding

When ¢y = 0 limb n is unconstrained

Dynamics Consistency

M(q) 4+ C(q,¢q) g = Bu+.J(q)" f

\ J

F X x) = argmin | ¥
u

All forces are active (contact set is constant)

Dynamics Consistency

\ J

M(q) 4+ C(q,q) q=Bu+J(q)" f » p

fET XX = argmin || V] + > NP/ (ci+ €)

All forces are active (contact set is constant)

High penalties for using forces where c =0

Dynamics Consistency

LY
0\ ""
M(q) 4+ C(q,q4) = Bu+ J(q)' f vl

fET XX = argmin || V] + > NP/ (ci+ €)

All forces are active (contact set is constant)

High penalties for using forces where c =0
trajectory optimization guides inverse dynamics solver via ¢

Contact-Invariant Optimization

min ZC’t(Xt) x:[qc]

No contact discontinuities and always have a gradient

Solved with standard local optimization

Optimization time of 2 to 10 minutes

Optimization Progress

Optimization Progress
Stage 1

Optimization Progress
Stage 2

Optimization Progress
Stage 3

Optimization Result

ldea

Add auxiliary variables

Softly enforce consistency between variables

Search in larger, but easier to explore space

Interaction with Environment

Agile Behaviors

Non-Humanoid Character Morphologies

Props
rigid body dynamics

variables for hand/prop contact

Interaction Between Multiple Characters

Hand Manipulation

min ZC’t(Xt) x:[qc]

t
o 1 qr
/ 4 W]
. N > £ 4(' &\
' | CT,rfinger = 1
/ ' . @Cuﬁnger:O / T —

C1,thumb = 1
[Mordatch, Popovic, Todorov, SCA 2012]

Object Grasping

In-Hand Object Manipulation

Manipulation Tasks

Two-Handed Manipulation

Trajectory Optimization with Direct Collocation

Automatic and general approach
Optimization problem for each motion clip
Do we solve optimization problems to move?
No learning or reuse in optimization

Cannot deal with unexpected events

Instead of motion clips, find policies

Trajectory Optimization with Direct Collocation

Learning Control Policies with Direct Collocation

Unknown/Uncertain Dynamics and Applications

Learning Control Policies
Ty - X — 1

Learning Control Policies
Ty - X — 1

Learning Control Policies
Ty - X — 1

Forward Shooting:

m@inzct(xt)’ x"T = f(x', mo(x"))
t

Learning Control Policies
Ty - X — 1

Forward Shooting:

m@inzct(xt)’ x"T = f(x', mo(x"))
t

Learning Control Policies
Ty - X — 1

Forward Shooting:

meinzct(xt)a x"T = f(x', mo(x"))
t

Learning Control Policies
Ty - X — 1

Forward Shooting:

meiﬂzct(xt)a x"T = f(x', mo(x"))
t

Poor Conditioning

Learning Control Policies
Ty - X — 1

Forward Shooting:

Learning from Demonstrations:

Learning Control Policies
Ty - X — 1

Learning from Demonstrations: pTTTTITTT e :

supervised learning Training Data

min)~ [|mo(x’) — || - input: X

Learning Control Policies
Ty - X — 1

Learning from Demonstrations: SGOR et .
supervised learning : Training Data
: E : ‘ 2 .]
meln ||779(XZ) — U-ZH I input: X°
z : output: uz

Where does training data come from?

e Human demonstration

Learning Control Policies
Ty - X — 1

Learning from Demonstrations: SGOR et .
supervised learning : Training Data
: E : ‘ 2 .]
meln ||7"9(XZ) — UZH I input: X°
z : output: uz

Where does training data come from?

e Human demonstration

e Trajectory optimization “7r=r ~T= = ¢

Learning Policies from Trajectory Optimization

Learning Policies from Trajectory Optimization

Learning Policies from Trajectory Optimization

Learning Policies from Trajectory Optimization

Learning Policies from Trajectory Optimization

Learning Policies from Trajectory Optimization

X1 ... X can be inconsistent or difficult to fit

Learning Policies from Trajectory Optimization

X1 ... X can be inconsistent or difficult to fit

Learning Policies from Trajectory Optimization

X1 ... X can be inconsistent or difficult to fit

Learning Policies from Trajectory Optimization

Joint Policy and Trajectory Optimization

INTERACT

[Mordatch,

—_—
—

[Mordatch, Todorov, RSS 2014]
Lowrey, Andrew, Popovic, Todorov, NIPS 2015]

=N orT °
= orr B °

.......

Joint Policy and Trajectory Optimization

0 X1 ... XN

min_ Y C(x"") + [Jmwe(x") — u|]?
1,t

Joint Policy and Trajectory Optimization

0 X1 ... XN

min_ Y C(x") + [Jmwe(x") — u|]?
1,t

Joint Policy and Trajectory Optimization

0 X1 ... XN

min_ Y C(x"") + [Jmwe(x") — u|?
1,t

Joint Policy and Trajectory Optimization

0 X1 ... XN

min_ Y C(x") + [Jmwe(x") —[u|?
1,t

Joint Policy and Trajectory Optimization

/ m(X)

min_ Y C(x") + |[re(x")— u|[?
1,1

0 X1 ... XN

Joint Policy and Trajectory Optimization

(%)
/ ¢ Adjust policy

’
’

L e Adjust trajectory

min_ 3" C(x") + [|mg(x") — u||?
0 X1 ... XN -

ldea

Add auxiliary variables
Softly enforce consistency between variables

Search in larger, but easier to explore space

. C 1,t ,t\
min 37O + g () ~

it

z’,tH2

Policy still not converging?

Policy Drift

Traditional supervised learning at test time:
independent errors

Policy at test time:

Policy Drift

Traditional supervised learning at test time:
independent errors

Policy at test time:

Policy Drift

Traditional supervised learning at test time:
independent errors

Policy at test time:

Policy Drift

Traditional supervised learning at test time:
independent errors

Policy at test time:

®

Policy Drift

Traditional supervised learning at test time:
independent errors

Policy at test time:

.

Policy Drift

Policy Drift

X+E

W\

Injecting Network Noise

Noisy Training Data

input: X +— &
output: W —+ Ke

Injecting Network Noise

Alternating Optimization

Decompose into:
® trajectory optimizations

® regression

Alternating Optimization

OP1

@
INTERAC o NET

e
e

Decompose into: . -
stay close to policy

® trajectory optimizations m}énz C(x") + [|mo(x") — u']|?
t

® regression

Alternating Optimization

~> OP1 :

—_—
—> OP1 . E—

W

INTERACT « ° o

Decompose into:

® trajectory optimizations

Sregeson | i)
it

Alternating Optimization

=]
OP1

e
e

OPT

X —~

- ‘

Decompose into:
® trajectory optimizations m}énz C(x") + [|mo(x") — u']|?
t

® regression

Alternating Optimization

~> OP1 :

—_—
—> OP1 . E—

W

INTERACT « ° o

Decompose into:

® trajectory optimizations

Sregeson | i)
it

Scalable Implementation

AWS node 1
4)
_)

AWS node K {]
[) AWS GPU node
_)

® asynchronous updates
® SGD network training

e Full dataset never loaded in memory

Future State Prediction

Unknown/Uncertain Dynamics and Applications

Executing optimal trajectories in open loop

What went wrong?

Darwin robot Imperfect simulator model

Movement with Model Uncertainty

[Mordatch, Lowrey, Todorov, IROS 2015]

Movement with Model Uncertainty

[Mordatch, Lowrey, Todorov, IROS 2015]

Generate noisy models varying:

limb mass
limb center of mass
contact locations

Optimize over multiple state trajectories
Single control trajectory

Execute control trajectory in open loop

No Model Noise With Model Noise

With Model Noise

What if we don’t want conservative motion?

Interactive Policies with Online Model Learning

[Mordatch, Mishra, Eppner, Abbeel, ICRA 2016]

'

.'*,I!“-,l‘\
Offline: At every timestep:
Train policy to output desired Learn robot dynamics
next state: on the fly from past observations
—t+1
X T Joint Angles, IMU, Forces Xt_|_1 — f(Xt, ut)

—t+1
Query policy for X T

*
Solve for robot torques W such that

X = f(x',u")

Detailed Humanoid Models
[Mordatch, Wang, Todorov, Koltun, SIGGRAPH Asia 2013]

| HIR

Bone — HER
| HFL

Tendon — HAB

e GLU HAD
| HAM

Muscle RF
| VAS

GAS

AEV TP

Detailed Humanoid Models

Musculotendon Actuator (Hill Model)

x’f" ;
¥ /0 ’
/
4
N '/
’..1 4 "
o

Muscle Tendon

Lce lsE
lmMTU

fpe(lce) —> PE

Muscle —

SE

\

fee = fiv(lce, |.ce)a fse(lse)

Equilibrium constraint: fce + fpe = fse

Model effort with metabolic energy expenditure [Anderson 99]

Musculotendon Unit (MTU) Actuator

muscle fiber

tendon

Musculotendon Unit (MTU) Actuator

|mtu

Musculotendon Unit (MTU) Actuator

|mtu

Musculotendon Unit (MTU) Actuator

|mtu

Musculotendon Unit (MTU) Actuator

fmtu

Musculotendon Unit (MTU) Actuator

fmtu

~ _ . pMTU

sin @

Musculotendon Unit (MTU) Actuator

J -

7 = rFMTU gip ¢/

Musculotendon Unit (MTU) Actuator

fmtu

fmtu = fmax fTI(lce) f\T/(l.ce)a + fpe

force-length and force-velocity relations

Musculotendon Unit (MTU) Actuator

fmtu

muscle activation

-
fmtu = Tmax fl('ce) fv(lce)a + fpe

Musculotendon Unit (MTU) Actuator

fmtu

fmtu = fmax fl(lce) fv(l.ce)a + fpe .

passive force

Musculotendon Unit (MTU) Actuator

fmtu

MTU usage effort modeled with metabolic energy expenditure
[Anderson 99]

Humanoid Model with MTUs

HER

HAM
VAS

AEV

1.5m/s Walking

knee ankle (degree) hip angle (degree)

ankle angle (degree)

1.5m/s Walking Kinematics and Torques

88<8 8

g

5

gat cycle (%)

~

[
n

hip moment (Nmikg)

n

'
T n

knee moment (Nmkg)
o

~n

ankie moment (Nm/iq)

|

&0 60 00 '60
gait cycle (%)

=)
3

4m/s Running

forward (m)

Gait Initiation COP Trajectory

-0.35

-0.45

-0.1 -0.05 0 0.05 0.1
lateral (m)

0.15

Trust Region Policy Optimization

Trajectory Optimization with Direct Collocation

Learning Control Policies with Direct Collocation

Unknown/Uncertain Dynamics and Applications

Thank You!

.1 vr]‘ 'i.‘]{z T
£ 4.) R ryd I\|‘I‘ i ‘ Hv_1
ea S8 = d 1 LA | t|‘, 4
= ¥ ¥ Lkt
129! X “‘“"L

Emo Todorov, Zoran Popovic, Pieter Abbeel, Vladlen Koltun, Aaron Hertzmann, Michael Kass, Jack Wang,
Kendall Lowrey, Galen Andrew, Nikhil Mishra, Clemens Eppner, Nikita Kitaev, Sachin Patil, Martin Delasa

