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Overview

® Last Time: Learning dynamics models, optimal
control, and policy learning

® Focused on using forward dynamics models and
shooting methods (LQR, DDP)
® Today:

® | ook at inverse dynamics models, direct collocation in
detail (for optimal control and policy learning)

® How to optimize complex movement with contacts
® Dealing with unknown and uncertain dynamics

® Applications to biomechanics



Trajectory Optimization with Direct Collocation

Learning Control Policies with Direct Collocation

Unknown/Uncertain Dynamics and Applications




Trajectory Optimization with Direct Collocation

Learning Control Policies with Direct Collocation

Unknown/Uncertain Dynamics and Applications




Trajectory Optimization

% target



Trajectory Optimization

Forward Shooting:
mm ZCt x!th = f(x',u")

) target



Trajectory Optimization

Forward Shooting:
mm ZCt x't = f(x!, u?)

3 P RN
u=y ) target



Trajectory Optimization

Forward Shooting:
mm ZCt x't = f(x', u?)

) target



Trajectory Optimization

Forward Shooting:
mm ZCt x!th = f(x',u")

) target



Forward Shooting:

Poor Conditioning



Forward Shooting:

Poor Conditioning



Forward Shooting:

Poor Conditioning



Forward Shooting:

Poor Conditioning



Poor Conditioning

Forward Shooting:



Narrow Feasible Region
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Forward Shooting:
mm ZC’t x' = f(x", u")

implicit hard constraint



Narrow Feasible Region

Forward Shooting:

mm ZC’t x'tt = f(x',u)

feasible region



Narrow Feasible Region

Forward Shooting:

mm ZCt x!th = f(x',u)

feasible region



Narrow Feasible Region

Forward Shooting:

mm ZCt x!th = f(x',u)

feasible region



Narrow Feasible Region

Forward Shooting:
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Narrow Feasible Region
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Narrow Feasible Region

Forward Shooting:

mm ZCt x!th = f(x',u)

e Comes up as an issue in practice
e collisions, falling down, etc...

® Prone to falling into local minima

e Makes solution sensitive to initial guess

e Initial guess from demonstrations and
randomization helps



From Last Lecture:

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints
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From Last Lecture:

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints

min Z(’ (x¢,uy) s.t. xp = fx—1,0-1)
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Direct Collocation

Forward Shooting:
mm ZC’t x!th = f(x',u")

inverse dynamics function
Direct Collocation: $

min ZC’t(Xt), st fi(xELxT) =ul e U
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Direct Collocation

Direct Collocation:

min ZC’t(Xt), st f7H(xEx"T) =ut e

t
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e Only pairwise dependencies
e Good conditioning

e changing x1 has similar effect as changing xT
e No forward integration instability



Direct Collocation

Direct Collocation:
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Direct Collocation

Direct Collocation:

mm ZCt ), st i, xMT) =ut el

Explicit rather than implicit constraint
Can be hard or soft
Less prone to local minima




Shooting vs Direct Collocation

Forward Shooting:
mm ZCt x!th = f(x',u")

J Optlmlze over controls
® State trajectory is implicit

® Dynamics is an implicit constraint (always satisfied)

Direct Collocation:

mm ZC’t ), st fHxEL,xTTHY =uteld

® Optlmlze over states
® Controls and forces are implicit

® Dynamics is an explicit constraint (can be soft)
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Inverse Dynamics Model
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Inverse Dynamics Model
f_l(Xt,Xt_H) _ ut

e Describes what controls and forces you apply when
transitioning from xt to xt*1

® Can be learned from data

e For rigid multi-body dynamics, we can do better
when we know system parameters
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Rigid Multi-Body Dynamics

- : ~1 +1
Generalized coordinates: ' ® &
t—1 ! t—1 ! 1
t .t ¢+ 9 —-d ., q97 —2q"+q \l/
X =q TC=""95 1= 512 &

Calculate velocities and accelerations from nearby states
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Rigid Multi-Body Dynamics

- : ~1 +1
Generalized coordinates: ' ® &
t—1 ! t—1 ! 1
t .t ¢+ 9 —-d ., q97 —2q"+q \l/
X =q TC=""95 1= 512 &

Dynamics equation: generalization of £ = ma

M(q) §+ C(a,¢q) ¢ = Bu+J(q)" f

Constraint forces and constraint Jacobian <= \‘/



Rigid Multi-Body Dynamics

- : ~1 +1
Generalized coordinates: ' ® &
t—1 ! t—1 ! 1
t .t ¢+ 9 —-d ., q7 —29"+q \l/
X =q TC=""95 1= 512 &

Dynamics equation: generalization of £ = ma

M(q)d+C(q,4) g=Bu+J(q)" f

For more detail, see chapters 2 and 3 in =

Springer Handbook of Robotics and
Analytical Dynamics: A New Approach
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Rigid Multi-Body Dynamics

- : ~1 +1
Generalized coordinates: ' ® &
t—1 ! t—1 ! 1
t .t ¢+ 9 —-d ., q97 —2q"+q \l/
X =q TC=""95 1= 512 &

Dynamics equation: generalization of £ = ma

M(q)q+C(q,q) 9= Bu+J(q)" f

Inverse dynamics function: =

fHET X = argmin || V]
u

can be solved numerically, or analytically [Todorov 14] - Py



Rigid Multi-Body Dynamics

Generalized coordinates: & ‘f &
b .t_qt—l_qt "t_qt—l_th_i_qt—l—l \ /

X =49 = "o 4= ot2 @f
Dynamics equation: generalization of £ = ma
M(q)q+C(q,q) 9= Bu+J(q)" f /‘

Inverse dynamics residual: = <

r(x 7 x5 X)) = min || V]|?
uf



Rigid Multi-Body Dynamics

Generalized coordinates: g' & @

t—1 t t—1 t t+1
.+ 4 -9 ., 9 —2q9°+q \l/
Xt — (1t gt = §' =

20t ot?

Dynamics equation: generalization of £ = ma

M(q)4+C(q,4) g= Bu+J(q)" f

Inverse dynamics residual:

’I“(Xt_l, th Xt—l—l)

= min || Y[’
uf



Simple Particle Example

Dynamics equation: U — g = mX

Inverse dynamics function:
f_l(Xt_l,Xt,XH_l) _ ut _ m(Xt—l . 2Xt i Xt—|—1)/5t +g

Cost: C(x) = ||x][?

Known:

Initial state: x° System parameters: m External forces: 8
Optimization unknowns: Xl, eey x!
Solution:

States: X', ...,XT =0 Implicit controls: uo, ...,XT_1 — g

& - &' & &t - @T

N
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Numerical Solutions for Direct Collocation Methods

& - &' & & - &

N

a - @—1 @ @+1

e First Thought: Set up a TensorFlow graph and optimize
with gradient descent

® For shooting methods we had 2nd order methods
(Iterative LQR, DDP)

e For direct collocation we also can apply a truncated
2nd order method



Gauss-Newton Method

e Total trajectory cost is

C(X) =) c(¢'(X))



Gauss-Newton Method

e Total trajectory cost is

C(X) =) c(@'(X))

includes inverse dynamics residual

and any cost function features



Gauss-Newton Method

e Total trajectory cost is

C(X) =) c(¢'(X))

e |ts gradient and truncated Hessian are
Cx = Zcfi,d)g(

t
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Gauss-Newton Method

e Total trajectory cost is

C(X) =) c(¢'(X))

e |ts gradient and truncated Hessian are
Cx = Zcfpc,bg(

t

Cxx = ) (%) "chedk + chdkx ~ Y _(d%) chedk

t t

® Find optimal solution by iterative Gauss-Newton steps

X* = X* — CxxCOx



Gauss-Newton Method

e Total trajectory cost is

=3 o(¢(X

® |ts gradient and truncated Hessian are
Cx = Zcfbc/)g(
t

Cxx = ) _(P%) chadx + chbxx = ) (Dx) Chodx
t t
® Find optimal solution by iterative Gauss-Newton steps
X* — X* _ C)z;(Cx Ty.pi.cally use dampe.d Hessian
(similar to Trust Region)
(Cxx + AI)Ox



Gauss-Newton Method

® Requires inverting (|x|T) x (]x|T') Hessian every time???

X* = X* — CxxCx

® Hessian is block sparse

& - &' & &t . &

: N

@ - @' @ @t -
® Can use sparse linear system solvers

e python: linalg.spsolve

e Other methods possible (multigrid, projection, spectral?)
e Constrained optimization possible (SQP) [Posa and Tedrake 12]



Dynamics with Contact

® Both shooting and collocation methods can be applied
to control of movement without contact

e flying, driving, swimming robots, collision-free paths




Dynamics with Contact

® Both shooting and collocation methods can be applied
to control of movement without contact

e flying, driving, swimming robots, collision-free paths

e With contact, it is difficult to apply either method

® |legged robots, manipulation




Dynamics with Contact

e Discontinuous jumps in contact forces (and their number)

¢ Dynamics equation:

,‘ M(q) 4+ C(q,dq) g = Bu+J(q)"
et \. J
q2



Dynamics with Contact

e Discontinuous jumps in contact forces (and their number)

¢ Dynamics equation:

/ »\. / M(q) &+ C(a,q) 4 = Bu +J(q)" [t
—— V;
qZ

e No gradient information from inactive contacts

Can’t anticipate being able to apply forces
- —

e

42



Dynamics with Contact

manual specification

track demonstrations
I

motion structure




Dynamics with Contact

——/ \.'/ |}

47

|

e Contact activity is an indirect function of state

e What if we make contact activity a direct
optimization variable like we did for state?



Contact-Invariant Optimization

[Mordatch, Todorov, Popovic, SIGGRAPGH 2012]
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Contact-Invariant Optimization

min g C*(x") x: [ qc]
Ctn = 1: foot/hand n is in contact with ground at time t

do d+ d2 C ar
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Co,rfoot=1

.



Contact-Invariant Optimization

min g C*(x") x: | qc]
enforce contact and dynamics consistency between q and C

Jo (o[’



Contact Consistency

When ch = 1 limb n must be touching ground and not sliding

When ¢y = 0 limb n is unconstrained




Dynamics Consistency

M(q) 4+ C(q,¢q) g = Bu+.J(q)" f

\ J

F X x ) = argmin | ¥
u

All forces are active (contact set is constant)



Dynamics Consistency

\ J

M(q) 4+ C(q,q) q=Bu+J(q)" f » p

fET XX = argmin || V] + > NP/ (ci+ €)

All forces are active (contact set is constant)

High penalties for using forces where c =0



Dynamics Consistency

LY
0\ ""
M(q) 4+ C(q,q4) = Bu+ J(q)' f vl

fET XX = argmin || V] + > NP/ (ci+ €)

All forces are active (contact set is constant)

High penalties for using forces where c =0
trajectory optimization guides inverse dynamics solver via ¢



Contact-Invariant Optimization

min ZC’t(Xt) x:[qc]

No contact discontinuities and always have a gradient

Solved with standard local optimization

Optimization time of 2 to 10 minutes




Optimization Progress



Optimization Progress
Stage 1



Optimization Progress
Stage 2




Optimization Progress
Stage 3




Optimization Result




ldea

Add auxiliary variables

Softly enforce consistency between variables

Search in larger, but easier to explore space




Interaction with Environment



Agile Behaviors



Non-Humanoid Character Morphologies



Props
rigid body dynamics

variables for hand/prop contact







Interaction Between Multiple Characters



Hand Manipulation

min ZC’t(Xt) x:[qc]

t
o 1 qr
/ 4 W ]
. N > £ 4(' &\
' | CT,rfinger = 1
/ ' . @Cuﬁnger:O / T —

C1,thumb = 1
[Mordatch, Popovic, Todorov, SCA 2012]



Object Grasping



In-Hand Object Manipulation



Manipulation Tasks






Two-Handed Manipulation



Trajectory Optimization with Direct Collocation

Automatic and general approach
Optimization problem for each motion clip
Do we solve optimization problems to move?
No learning or reuse in optimization

Cannot deal with unexpected events

Instead of motion clips, find policies



Trajectory Optimization with Direct Collocation

Learning Control Policies with Direct Collocation

Unknown/Uncertain Dynamics and Applications




Learning Control Policies
Ty - X — 1




Learning Control Policies
Ty - X — 1



Learning Control Policies
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Learning Control Policies
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Forward Shooting:
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Learning Control Policies
Ty - X — 1

Forward Shooting:

meiﬂzct(xt)a x"T = f(x', mo(x"))
t

Poor Conditioning



Learning Control Policies
Ty - X — 1

Forward Shooting:

Learning from Demonstrations:




Learning Control Policies
Ty - X — 1

Learning from Demonstrations: pTTTTITTT e :

supervised learning Training Data

min )~ [|mo(x’) — || - input: X




Learning Control Policies
Ty - X — 1

Learning from Demonstrations:  SGOR et .
supervised learning : Training Data
: E : ‘ 2 . ]
meln ||779(XZ) — U-ZH I input: X°
z : output: uz

----------------------

Where does training data come from?

e Human demonstration



Learning Control Policies
Ty - X — 1

Learning from Demonstrations:  SGOR et .
supervised learning : Training Data
: E : ‘ 2 . ]
meln ||7"9(XZ) — UZH I input: X°
z : output: uz

----------------------

Where does training data come from?

e Human demonstration

e Trajectory optimization “7r=r ~T= = ¢



Learning Policies from Trajectory Optimization



Learning Policies from Trajectory Optimization



Learning Policies from Trajectory Optimization



Learning Policies from Trajectory Optimization

----------------------

------------------
-----------------------



Learning Policies from Trajectory Optimization




Learning Policies from Trajectory Optimization

X1 ... X can be inconsistent or difficult to fit
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Learning Policies from Trajectory Optimization

X1 ... X can be inconsistent or difficult to fit




Learning Policies from Trajectory Optimization



Joint Policy and Trajectory Optimization

INTERACT

[Mordatch,

—_—
—

[Mordatch, Todorov, RSS 2014]
Lowrey, Andrew, Popovic, Todorov, NIPS 2015]

=N orT °
= orr B °

.......




Joint Policy and Trajectory Optimization

0 X1 ... XN

min_ Y C(x"") + [Jmwe(x") — u|]?
1,t
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Joint Policy and Trajectory Optimization
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Joint Policy and Trajectory Optimization

0 X1 ... XN

min_ Y C(x") + [Jmwe(x") —[u|?
1,t



Joint Policy and Trajectory Optimization

/ m(X)

min_ Y C(x") + |[re(x")— u|[?
1,1

0 X1 ... XN



Joint Policy and Trajectory Optimization

(%)
/ ¢ Adjust policy

’
’

L e Adjust trajectory

min_ 3" C(x") + [|mg(x") — u||?
0 X1 ... XN -




ldea

Add auxiliary variables
Softly enforce consistency between variables

Search in larger, but easier to explore space

. C 1,t ,t\
min 37O + g () ~

it

z’,tH2



Policy still not converging?




Policy Drift

Traditional supervised learning at test time:
independent errors

Policy at test time:
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Policy Drift

Traditional supervised learning at test time:
independent errors

Policy at test time:

®




Policy Drift

Traditional supervised learning at test time:
independent errors

Policy at test time:

.




Policy Drift



Policy Drift

X+E

W\




Injecting Network Noise

Noisy Training Data

input: X +— &
output: W —+ Ke




Injecting Network Noise




Alternating Optimization

Decompose into:
® trajectory optimizations

® regression



Alternating Optimization

OP1

@
INTERAC o NET

e
e

Decompose into: . -
stay close to policy

® trajectory optimizations m}énz C(x") + [|mo(x") — u']|?
t

® regression



Alternating Optimization

~> OP1 :

—_—
—> OP1 . E—

W

INTERACT « ° o

Decompose into:

® trajectory optimizations

Sregeson | i)
it



Alternating Optimization

= ]
OP1

e
e

OPT

X —~

- ‘

Decompose into:
® trajectory optimizations m}énz C(x") + [|mo(x") — u']|?
t

® regression



Alternating Optimization

~> OP1 :

—_—
—> OP1 . E—

W

INTERACT « ° o

Decompose into:

® trajectory optimizations

Sregeson | i)
it



Scalable Implementation

AWS node 1
4 )
\_ )

AWS node K { ]
[ ) AWS GPU node
\_ )

® asynchronous updates
® SGD network training

e Full dataset never loaded in memory



























Future State Prediction




Unknown/Uncertain Dynamics and Applications




Executing optimal trajectories in open loop




What went wrong?

Darwin robot Imperfect simulator model



Movement with Model Uncertainty

[Mordatch, Lowrey, Todorov, IROS 2015]




Movement with Model Uncertainty

[Mordatch, Lowrey, Todorov, IROS 2015]

Generate noisy models varying:

limb mass
limb center of mass
contact locations

Optimize over multiple state trajectories
Single control trajectory

Execute control trajectory in open loop




No Model Noise With Model Noise




With Model Noise













What if we don’t want conservative motion?




Interactive Policies with Online Model Learning

[Mordatch, Mishra, Eppner, Abbeel, ICRA 2016]

'

.'*,I!“-,l‘\
Offline: At every timestep:
Train policy to output desired Learn robot dynamics
next state: on the fly from past observations
—t+1
X T Joint Angles, IMU, Forces Xt_|_1 — f(Xt, ut)

—t+1
Query policy for X T

*
Solve for robot torques W such that

X = f(x',u")









Detailed Humanoid Models
[Mordatch, Wang, Todorov, Koltun, SIGGRAPH Asia 2013]

| HIR

Bone — HER
| HFL

Tendon — HAB

e GLU HAD
| HAM

Muscle RF
| VAS

GAS

AEV TP




Detailed Humanoid Models




Musculotendon Actuator (Hill Model)

x’f" ;
¥ /0 ’
/
4
N '/
’..1 4 "
o

Muscle Tendon

Lce lsE
lmMTU

fpe(lce) —> PE

Muscle —

SE

\

fee = fiv(lce, |.ce)a fse(lse)

Equilibrium constraint: fce + fpe = fse

Model effort with metabolic energy expenditure [Anderson 99]



Musculotendon Unit (MTU) Actuator

muscle fiber

tendon



Musculotendon Unit (MTU) Actuator

|mtu




Musculotendon Unit (MTU) Actuator

|mtu




Musculotendon Unit (MTU) Actuator

|mtu




Musculotendon Unit (MTU) Actuator

fmtu




Musculotendon Unit (MTU) Actuator

fmtu

~ _ . pMTU

sin @



Musculotendon Unit (MTU) Actuator

J -

7 = rFMTU gip ¢/



Musculotendon Unit (MTU) Actuator

fmtu

fmtu = fmax fTI(lce) f\T/(l.ce)a + fpe

force-length and force-velocity relations



Musculotendon Unit (MTU) Actuator

fmtu

muscle activation

-
fmtu = Tmax fl('ce) fv(lce)a + fpe



Musculotendon Unit (MTU) Actuator

fmtu

fmtu = fmax fl(lce) fv(l.ce)a + fpe .

passive force



Musculotendon Unit (MTU) Actuator

fmtu

MTU usage effort modeled with metabolic energy expenditure
[Anderson 99]



Humanoid Model with MTUs

HER

HAM
VAS

AEV




1.5m/s Walking






knee ankle (degree) hip angle (degree)
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1.5m/s Walking Kinematics and Torques
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4m/s Running












forward (m)

Gait Initiation COP Trajectory
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Trust Region Policy Optimization



Trajectory Optimization with Direct Collocation

Learning Control Policies with Direct Collocation

Unknown/Uncertain Dynamics and Applications




Thank You!
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